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UNIT-1(ANTENNA BASICS &WIRE ANTENNAS)
Syllabus:Antenna Basics &Wire Antennas: Definition of antenna, Radiation Mechanism –
single wire, two wire, dipoles, Antenna Parameters - Radiation Patterns, Main Lobe and Side
Lobes, Beam widths, Beam Area, Radiation Intensity, Beam Efficiency, Directivity, Gain and
Resolution, Aperture Efficiency, Effective Height and length, Radiation from Small Electric
Dipole, Quarter wave Monopole and Half wave Dipole – Current Distributions, Field
Components, Radiated power, Radiation Resistance, Loop Antennas - Introduction, Small
Loop, Comparison of far fields of small loop and short dipole, Radiation Resistances and
Directives of small and large loops (Qualitative Treatment), Arrays with Parasitic Elements -
Yagi - Uda Arrays, Folded Dipoles & their characteristics

DEFINITION OF ANTENNA
Antenna is defined as follows: Antenna is basically a wire or current carrying
conductor.
(1) A device which converts electrical signal into Electromagnetic waves or vice versa.
(2) A transitional device or transducer which converts electrical energy into EM wave
energy
(3) A device which converts single dimensional signal into three dimensional signal

RADIATION MECHANISM
Radiation mechanism of single wire antenna:
Conducting wires are material whose prominent characteristic is the motion of electric
charges and the creation of current flow. Let us assume that an electric volume charge
density, represented by qv(coloumbs/m3), is distributed uniformly in a circular wire of
cross sectional area ‘A’ and volume ‘V’, as shown in figure below.

The total charge Q within volume V is moving in the z direction with a uniform
velocity vz(meters/sec). The current density Jz(ampere/m2) over the cross section of
the wire is given by

�� = ���� − (1)
If the wire is made of an ideal electric conductor, the current density Js(ampere/m)
resides on the surface of the wire and it is given by

�� = ���� − (2)

SJC
ET



Where qs (coulombs/m2) is the surface charge density. If the wire is very thin(ideally
zero radius),
Then the current in the wire can be represented by

�� = ���� − (3)
Where ql (coulombs/m) is the line charge density.
Instead of examining all three current densities, we will primarily concentrate on the
very thin wire. The conclusions apply to all three. If the current is time-varying then
the current of equation 3 can be written as

���

��
= ��

���

��
= ���� − (4)

Where dvz/dt = az (meters/sec2) is the acceleration. If the wire is of length ‘l’, then
equation 4 can be written as

�
���

��
= ���

���

��
= ����� − (5)

From equation 5, the following points can be observed:
(i) If a charge is not moving, current is not created and there is no radiation.
(ii) If charge is moving with a uniform velocity:
(a) There is no radiation if the wire is straight, and infinite in extent
(b) There is radiation if the wire is curved, bent, discontinuous, terminated, or
truncated as shown in figure 2.
(iii) If charge is oscillating in a time-motion, it radiates even if the wire is straight.

Radiation mechanism of two-wire antenna:
The two wire transmission line can also act as an antenna. To understand this let us
consider the two-wire transmission line which is shown in the figure below.

(a) Curved

(b) Bent

(c) Discontinuous

(d) Terminated
Figure 2: Wire configuration for
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The transmission line act as an antenna when its second port is open circuited. In case
of transmission line the EM waves will present in between the two wires as shown on
the figure. These EM waves will enter in to the free space through the open circuit in
the form of radiation. To have the impedance matching between the transmission line
and the free space, and to avoid the diffraction, the transmission line is tapered at the
second port. Therefore the antenna is a transition device or transducer between a
guided wave and the free space wave or vice versa.

Dipoles(Oscillating Electric dipole or short dipole):
When the charge is moving with uniform velocity along the straight conductor, it does
not radiate. But a charge moving back and forth in simple harmonic motion along the
straight conductor, then it radiates because there is acceleration. The dipole is nothing
but a current carrying conductor contains two poles or polarities as shown in the
figure 1.16 below. The short dipole is nothing but a small current carrying conductor
with length less than 0.1λ.

Transmission 
line

I

+Q

-Q

Dipole

Fig1.16: Short dipole

To illustrate the radiation from dipole antenna, let us consider the
dipole of figure 1.17 which has two equal charges of opposite sign oscillating
up and down in harmonic motion with instantaneous separation l (maximu
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separation l0 ) while focusing attention on the electric field. For clarity single
electric field line is shown in the figure.

+

-

lo

Field line

t = 0
Fig 1.17(a): Electric 
filed line with charges 
at ends of dipole

+

-

Field line

t = T/8
Fig 1.17(b): Wave front 
Moves out as charges
 go on

I=0

I

I

t = T/4
Fig 1.17(c): As the charges
Pass the midpoint the field
Lines cut loose

I=max
+
-

+

-

t = 3T/8
Fig 1.17(d): Wave 
front detached from 
the antenna

+

-

t = T/2
Fig 1.17(a): Wave 
front detached from 
the antenna

Wave fronts
Moving out

Wave fronts
Moving out

At time t=0, the charges are at maximum separation and undergo maximum
acceleration (Fig1.17 a). At this instant the current I is zero. At 1/8 period later, the
charges are moving toward each other (Fig1.17b) and at ¼ period they pass at the
midpoint (Fig1.17c). As this happens, the field lines detach and new ones of opposite
sign are formed. At this time the equivalent current I is maximum and the charge
acceleration is zero. As time passes to a ½ period, the fields continue to move out as
in fig1.17d and e.

ANTENNA PARAMETERS
Radiation Patterns:
The radiation pattern is defined as the graphical representation of radiation properties
with respect to the space coordinates. The radiation properties are radiation intensity,
field strength and phase or polarization. When the radiation pattern is expressed in
terms of the field strength then it is called field pattern or when it is expressed in
terms of power then it is called the power pattern. The radiation pattern place very
important role in analyzing the performance of any practical antenna.

The examples of radiation patterns are
(i) Omnidirectional or broadcasting pattern
(ii) Pencil beam pattern
(iii) Fan beam pattern
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(iv) Shaped beam pattern
In addition to these, there are other pattern shapes like Limacon, Cardioid, figure
of eight or doughnut shape. The radiation pattern produced by the dipole is shown
in the following figure1.1.

x

y

z

Fig1.1a: Half of the three dimensional pattern (Doughnut shape)

x

y

z

Vertical antenna

Fig1.1b: Two dimensional pattern obtained by cutting the three dimensional
pattern with vertical plane along the axis of the dipole.

Main Lobe and Side Lobes(Radiation pattern lobes):
Different parts of radiation pattern are referred as the lobes. Various lobes are shown
in the figure 1.4 and figure1.5 below.
Major lobe: A lobe which contains the direction of maximum radiation is called the
main lobe or major lobe. The radiation pattern which contains a single major lobe is
called the unidirectional radiation pattern. Whereas the radiation pattern which
contains two major lobes is called the bidirectional radiation pattern.
Minor lobe: Any lobe except the main lobe is called the minor lobe. That means
other than the major lobes the remaining lobes are called the minor lobes. Practically
the minor lobes should be eliminated to improve the efficiency of any antenna.
Side lobe: It is a minor lobe which is existing in any direction other than the intended
direction. Normally the side lobe is adjacent to the main lobe and occupies the
hemisphere in the direction of the main lobe.

SJC
ET



HPBW

BWFN
Side lobe

Back lobe

Minor lobes

x

y

z
Major lobe

Fig1.4: Radiation pattern lobes (three dimensional)

0

HPBW

BWFN

Major lobe

Side lobe
Back lobe

Lobes

Fig1.5: Linear plot of radiation pattern (two dimensional)

Back lobe: It is a minor lobe which occupies the hemisphere in a direction exactly
opposite to the main lobe.
Minor lobes are the small radiation lobes which represents the radiation in the
undesired direction. In the figures 1.4 and 1.5, the terms HPBW represents the Half
Power Beam Width whereas BWFN represents the Beam Width between the First
Nulls. These two terms will be defined in the later sections.

Patterns in the principal planes:
The performance of any antenna can be described in terms of its patterns in the
principal planes. Basically there are two types of patterns in the principal plane such
as E-plane principal pattern and H-plane principal pattern. These two patterns are
shown in the figure1.3 below.
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x

y

z

E-plane

H-planeE-field

H-field

Fig1.3: E-plane and H-plane principal patterns

The radiation pattern of any antenna contains two planes such as E-plane and H-plane.
The E-plane principal pattern is defined as the plane containing the electric field
vector and direction of maximum radiation. Similarly the H-plane pattern is defined
as the plane containing magnetic field vector and the direction of maximum radiation.

Beam widths:
In case of antennas regarding the beam width we need to define two parameters such
as Half Power Beam Width (HPBW) and Beam Width between First Nulls (BWFN).
These two parameters are represented in the figure 1.13.

HPBWBWFN

P1

P2

Fig 1.13: Beam Width of an antenna

Major lobe

The antenna beam width is the angular width in degrees measured on the main beam.
The half power beam width is defined as the width of the major lobe in between the
two half power points P1 and P2 as shown in the figure. The half power points are the
points at which the power is half of the maximum value. Also the HPBW is defined as
the width of the main lobe at which the electric field strength is 0.707 times or 1/√2
times the maximum value. The BWFN is defined as the width of the major lobe in
between the first nulls. The BWFN is approximately twice the HPBW. The directivity
(D) is related with beam solid angle (dΩ) or beam area (B) as

� = 4�
��

= 4�
�
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The beam width place very important role in finding the direction of transmitting
antenna. Especially the narrow beam is used in direction finding applications.

Beam Area:
Beam area is nothing but a beam solid angle. The solid angle along the radius
direction is given by

�� =
��
�2 =

�2 sin ����∅
�2 = sin ����∅

The beam area or beam solid angle of an antenna is given by the integral of the
normalized power pattern over a sphere (4π Steradians)

ΩA = Pn θ, ∅ dΩ�
The beam area of an antenna can be often be described approximately in terms of the
angles subtended by the half power points of the main beam in the two principal
planes. Thus,

Beam Area ≅ ΩA ≅ θHP∅HP
Where θHP and ∅HP are the half power beam widths (HPBW) in the two principal
planes, minor lobes being neglected.

Radian and steradian:
The unit of plane angle is radian. The radian is defined as the plane angle with its
vertex at the centre of a circle of radius ‘r’ that is subtended by an arc whose length is
‘r’ as shown in the figure1.6 below.

θ r

r

o

Fig1.6: Radian
The number of radians in a complete circle is given by

Total no.of radians =
������������� �� ������

��� �����ℎ
= 2��

�
= 2�

Therefore in the total number of radians in a complete circle is 2π.
Similarly the unit of solid angle is steradian. The steradian is defined as

the solid angle with its vertex at the centre of sphere of radius ‘r’ that is subtended
by the spherical surface of area which is equal to the area of square with each side
of lenght ‘r’ as shown in the figure1.7 below.
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dΩ

r

o

=

A

A

Area=r2

Fig1.7: Steradian
The total number of steradians in a complete sphere is given by

Total no.of steradians =
Area of the sphere

differential surface area
= 4πr2

r2 = 4π
�� = 4�

Therefore in a complete sphere there are 4π steradians. The number of steradians
in a sphere along the r-direction is given by

dΩ = ds
r2 - (1)

But �� = �2 sin ����∅
Therefore dΩ = r2 sin θdθd∅

r2 = sin θdθd∅ - (2)

Radiation Intensity:
The radiation intensity is defined as the power per unit solid angle. The radiation
intensity is represented with ϕ. Therefore

Φ =
power

unit solid angle
- (1)

The unit of radiation intensity is watts/steradian.
We know that the poynting vector is

� = � × � watts/m2 - (2)
The average poynting vector is given by

Pav = 1
2

E × H∗ - (3)

But �
�

= �
The pointing vector becomes

P = E2

η
- (4)

And the average pointing vector or radial component of pointing vector becomes
Pav = Pr = 1

2
E2

η
- (5)

The radiation intensity in terms of Pr is given by
Φ = Pr·r2 - (6)

Since r2 = ds
dΩ

Substitute equation 5 in equation 6

Φ =
1
2

E2 θ,∅
η

∙ r2 watts/steradian

The radiation intensity can also defined as
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Φ = differential power
differential element of solid angle

= dWr
dΩ

Φ =
dWr
dΩ

- (7)
��� =ϕdΩ

Take integration on both sides

��� = ϕdΩ��

�� = ϕdΩ� - (8)
The above equation represents the power radiated by the antenna. In case of isotropic
radiator the solid angle is 4π ( because the shape of the radiation pattern due to the
isotropic radiator is sphere and hence the 4π is total steradians present in the sphere)
and the radiated power becomes

�� = 4πϕ�

�� = 4� ϕ�

�� = 4�ϕav
Where ϕ�� = ϕ�

Therefore ϕ�� = ��
4�

- (11)
The above equation is called the average radiation intensity.

Beam Efficiency:
The antenna beam efficiency is defined as the ratio of main beam area (ΩM) to the
total beam area (ΩA) i.e.

Beam Efficiency BE = Main beam area
Total beam area

= ΩM
ΩA

The total beam area(ΩA) = ΩM+Ωm

Where Ωm is called the minor lobe area.
ΩA = ΩM + Ωm

Divide on both sides with ΩA , Then
ΩA

ΩA
=

ΩM + Ωm

ΩA

1 =
ΩM

ΩA
+

Ωm

ΩA
1 = BE + Stray factor

Therefore Beam Efficiency (BE) = 1-Stray factor.
To have the higher antenna beam efficiency always the stray factor must be as low as
possible.

Directivity:
The maximum directive gain is nothing but directivity. It is denoted with D. The
directivity is defined in the following ways:

D =
Maximum radiation intensity from the test antenna
Average radiation intensuty from the test antenna

D =
Maximum radiation from the test antenna

Radiation intensity from the reference antenna

D =
Power radiated from the test antenna

Power radiated from the reference antenna
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Gain:
In general the terms like Gain, Directive gain, Power gain, Directivity having the
similar meaning. Theoretically these terms having slightly different definitions but
practically all the terms are same. The gain or directivity Gain or directivity or power
gain is represents the ability of transmitting antenna to radiate in to a certain direction
or the ability of the receiving antenna to receive the signal from the certain direction.

Specifically the gain will be defined as follows:

Gain G =
Maximum radiation intensity from the test antenna

Maximum radiation intensity from the reference antenna
And

Gain G =
Maximum power received by the test antenna

Maximum power received by the reference antenna

Resolution:
The resolution of an antenna may be defined as equal to half the beamwidth between
first nulls(FNBW/2). For example an antenna whose pattern FNBW = 20 has a
resolution of 10 and accordingly, should be able to distinguish between transmitters on
two adjacent satellites in the Clarke geostationary orbit separated by 10.

Antenna efficiency:
The antenna efficiency is defined as the ratio of radiated power to the power

input supplied to the antenna. That is

η =
Power radiated

Power input to the antenna

η = Wr
WT

= Wr
Wr+Wl

- (1)

When the loss power(Wl) is neglected , then the antenna efficiency will be 100%.
Multiply numerator and denominator of equation 1 with ϕ(θ,φ)

η =
Wr

WT
×

4πϕ θ, ∅
4πϕ θ, ∅

=
4πϕ θ, ∅

WT

Wr

4πϕ θ, ∅

η = GP ∙
1
Gd

η = GP
Gd

- (2)
The antenna efficiency can also expressed in terms of radiation resistance(Rr) and loss
resistance(Rl) as follows:
We know that

Wr = I2Rr and Wl = I2Rl - (3)
Substitute above equation in equation 1
Then

η =
Wr

Wr + Wl
=

I2Rr

I2Rr + I2Rl
=

I2Rr

I2 Rr + Rl

η = Rr
Rr+Rl

- (4)

Aperture Efficiency:
Aperture is nothing but area. The Physical aperture is nothing but physical area of the
antenna which depends upon the physical dimensions of the antenna. The ratio in
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between the maximum effective area and the physical area is nothing but a absorption
ratio or aperture efficiency and is given by

� = ��� =
���

��
Effective area or effective aperture or capture area:
The effective area or effective aperture or capture area is defined as the ratio of the
power received to the poynting vector of the incident field. That is

Ae =
Power received

Poynting vector of the incident wave
Ae = W

P
m2 - (1)

To derive the equation for the effective area let us consider the following figure 1.8

ZL
Incoming 
EM Waves

Receiving Antenna

ZA

ZL

Fig1.8a: Receiving antenna Fig1.8b: Equivalent circuit

Let I be the current flowing in the receiving antenna due to the incident EM waves,
then the power received is given by

W = Irms
2 RL - (2)

To satisfy the maximum power transfer theorem only load resistance (instead of load
impedance) is considered in the above equation.
Substitute equation 2 in equation 1

Ae = Irms
2 RL

P
- (3)

From the equivalent circuit we have
Irms = V

ZL+ZA
- (4)

Where ZL = RL + jXL called the load impedance
And ZA = RA + jXA called the antenna impedance

∴ Irms =
V

RL + jXL + RA + jXA

Irms =
V

RL + jXL + RA + jXA

Irms =
V

RL + RA + j XL + XA

Irms = V
RL+RA 2+ XL+XA 2 - (5)

Substitute equation 5 in the equation 3

Ae =
V

RL + RA
2 + XL + XA

2

2 RL

P

Ae = V2RL
RL+RA

2+ XL+XA
2 P

- (6)
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To deliver the maximum power to the load we need to satisfy the maximum power
transfer theorem. According to the maximum power transfer theorem the source
impedance and load impedance must be complex conjugates to each other. i.e

RL = RA - (7)
And XL =− XA - (8)

But RA = Rr + Rl = Rr when Rl is neglected.
Therefore RL = Rr - (9)
Substitute equations 7 and 8 in equation 6

��� =
�2��

�� + ��
2 + �� − ��

2 �

��� =
�2��

�� + ��
2 + 0 2 �

��� =
�2��

�� + ��
2 �

��� =
�2��

2��
2 �

=
�2��

4���
2

��� = �2

4���
- (10)

In addition to the above effective area we need to define some more like Scattering
aperture, loss aperture, collecting aperture and physical aperture.
When the effective area is defined in terms of radiation resistance(Rr) then it is called
as the Scattering aperture(As) and is given by

As = V2

4PRr
- (11)

When the effective area is defined in terms of loss resistance(Rrl) then it is called as
the Loss aperture(Al) and is given by

As = �2

4���
- (12)

The ration of loss aperture and effective aperture is called the effectiveness ratio and
is given by

α = ��
Aem

- (13)

The collecting aperture(Ac) is nothing but a collection of all the three apertures such
as effective aperture, scattering aperture and loss aperture. i.e.

�� = �� + �� + �� - (14)
The ration of scattering aperture to the effective aperture is nothing but scattering
ratio and is given by

β = As
Ae

- (15)

Effective Height and length:
Generally the effective height or effective length represents how far the antenna is
involved either in receiving or transmitting the signal. The effective height is defined
separately for receiving antenna and transmitting antenna.
For receiving antenna: In case of receiving antenna the effective height or effective
length �� is defined as the ratio of the induced voltage and incident electric field
strength. i.e.
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�� = Voltage induced
Incident electric field strength

m or λ

�� = �
�

- (1)

We know that ��� = �2

4���
- (2)

Also we know that the Poynting vector is � = � × �

Or � = �2

�
- (3)

Substitute equation 3 in equation 2

��� =
�2

4
�2

�
��

�2

�2 =
4�����

�

�� =
�
�

=
4�����

�

�� = 2 �����
�

- (4)

��2 =
4�����

�
Or

��
2 =

4����

�

�� = ��2�
4��

- (5)

For transmitting antenna: In case of transmitting antenna the effective height or
effective length is simply the physical length of the antenna where the current is
uniform. Theeffective length and physical length of transmitting antenna is
represented in the figure 1.9 below.

I(c)le
l

Dipole

I(z)

Current 
distribution

Fig 1.9: Illustration of effective length for transmitting antenna

The meaning of different letters indicated in the above figure are given by
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I(c) = Current at the terminals of the actual antenna, I(z) = Current at any point ‘z’ of
the antenna, le = Effective length, l = Physical length.
We know that the current element is Idl, with I is current and dl is the differential
length. Therefore � � ��� = −�/2

�/2 � � ���

��� =
1

� �
−�/2

�/2

� � ���

��� = 2
� � 0

�/2 � � ���
The above equation represents the effective height of the transmitting antenna.

Relation in between the effective area and gain or directivity:
Let us consider two antennas A and B and then

Da be the directivity of antenna A
Db be the directivity of antenna B

Aema be the maximumveffective area of the antenna A
Aemb be the maximum effective area of the antenna B

Practically it is found that the directivity is directly proportional to the effective area.
i.e

Da α Aema

and Db α Aemb

Take the ratio of the above two equations then
��
��

= ����
����

- (1)

Let the antenna A be the isotropic radiator, then the gain or directivity of isotropic
radiator is unity. i.e. Da=1.
Then above equation becomes

1
��

= ����
����

- (2)

���� = ����
��

- (3)

�� = ����
����

- (4)

Let the antenna B be the short dipole, then the gain or directivity of short dipole is 3/2
and maximum effective area is 3

8�
�2

i.e. Db = 3/2 and Aemb = 3
8�

�2

Substitute above two values in the equation 3 then

���� =
3

8� �2

3/2

���� = �2

4�
- (5)

Substitute equation 5 in the equation 4

�� =
����

�2

4�
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�� =
4�����

�2

In general, � = � = 4���
�2 - (6)

The above equation gives the relation in between the effective area and the gain or
directivity

RADIATION FROM SMALL ELECTRIC DIPOLE
The radiation is nothing but the EM waves produced by any practical antenna. The
radiation field equations of any antenna can be obtained by using the Maxwell’s
equations. Therefore let us discuss about the basic Maxwell’s equations.
Basic Maxwell’s equations:

The basic four Maxwell’s equations for time varying Electromagnetic fields is
given by

∇ ∙ � = 0 1.75
∇ ∙ � = �� 1.76

∇ × � =− ��
��

1.77

∇ × � = � + ��
��

1.78
The first Maxwell equation says that the diverging magnetic field is zero. That means
the magnetic field always exists in the form of closed loops. The second Maxwell
equation represents that the electric flux passing through any closed surface is equal
to the total charge enclosed by that closed surface. The third Maxwell equation says
that, the time varying magnetic field is able to produce the e.m.f. or voltage in a
closed circuit. The fourth Maxwell equation says that, the magnetic field intensity
around any closed path is equal to the conduction current density plus the
displacement current density. These Maxwell equations will be used to derive the
wave equation or helm holtz equation.
Field Components:
To derive the field components due to short dipole let us consider the short dipole
located in the sphere as shown in the figure below.

Er

Eφ

Eθ

x

y

z

Short dipole

θ

φ

r

P
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Let
� = �� sin �� = ������ − 1

be the current applied to the antenna. Then the retarded current (current at the
receiving point) is given by

� = �� ��� �−�/� − 2
To find out the magnetic vector potential due to short dipole consider the following
figure.

S1

S2
r

S

P (Receiving 
      Point)

x

y

z

dl=dz

-l/2

+l/2

Short dipole

+Q

-Q

The basic equation for the retarded vector potential is given by

� =
�

4�
�
�� ��

But from the above figure dl = dz

� =
�

4� −�/2

�/2 �
�� �� =

2�
4� 0

�/2 �
�� ��

� =
�

2� 0

�/2 �
�� �� − 3

Substitute equation 2 in equation 3.

� =
�

2� 0

�/2 �� ��� �−�/�

�
� ��

� =
�

2�
�� ��� �−�/�

� 0

�/2
��� =

�
2�

�� ��� �−�/�

�
�
2

� =
� � �� ��� �−�/�

4��
But A = Az because the current in the short dipole flows in the z-direction.
Therefore

�� = � =
� � �� ��� �−�/�

4��
− 4
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The above equation represents the retarded vector potential at the receiving point due
to short dipole.
Now let us derive the retarded scalar potential due to short dipole. The basic equation
for the retarded scalar potential is given by

� =
1

4��
�
�� ��

As the short dipole contains the charges (+Q and –Q) only at the end points of the
antenna, the above equation can be rewritten as

� =
1

4��
�
�1

−
�
�2

− 5

From the fundamentals, we know that

� = �� �� − 6

Substitute equation 2 in equation 6

� = �� ��� �−�/�� ��

� =
�� ��� �−�/�

��
− 7

Substitute equation 7 in equation 5

� =
1

4��
�� ��� �−�1/�

��. �1
−

�� ��� �−�2/�

��. �2
− 8

The equations for S1 and S2 will be obtained from the figure shown below.

S1

S2

r

l/2 cosθ

l/2 cosθ

To point ‘P’

θ
Short dipole

l/2
θ

From the above figure,

�1 = � −
�
2

cos � − 9

�2 = � +
�
2

cos � − 10
Substitute equations 9 and 10 in equation 8.
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� =
1

4��
�� ��� �− �−�

2 cos � /�

��. � −
�
2 cos �

−
�� ��� �− �+�

2 cos � /�

��. � +
�
2 cos �

� =
��

4��(��)
��� �−�/� �

��� cos �
2�

� −
�
2

cos �
−

��� �−�/� �
−��� cos �

2�

� +
�
2

cos �

� =
�� ��� �−�/�

4��(��)
�

��� cos �
2�

� −
�
2

cos �
−

�
−��� cos �

2�

� +
�
2

cos �

� =
�� ��� �−�/�

4��(��)

�
��� cos �

2� � +
�
2

cos � − �
−��� cos �

2� � −
�
2

cos �

� −
�
2

cos � � +
�
2

cos �

� =
�� ��� �−�/�

4��(��)

�
��� cos �

2� � +
�
2

cos � − �
−��� cos �

2� � −
�
2

cos �

�2 −
�
2

cos �
2

When r >> l, then �
2

cos �
2

can be neglected.

� =
�� ��� �−�/�

4��(��)�2 �
��� cos �

2� � +
�
2

cos � − �
−��� cos �

2� � −
�
2

cos �

� =
�� ��� �−�/�

4��(��)�2 ���
�� cos �

2�
+ � sin

�� cos �
2�

� +
�
2 cos �

− ���
�� cos �

2�
− � sin

�� cos �
2�

� −
�
2

cos � − 11

When λ >> l, then

���
�� cos �

2�
= ���

2��� cos �
2�

= ���
��� cos �

�
= ���

�� cos �
�

≅ 1

Similarly

sin
�� cos �

2�
= ���

�� cos �
�

≅
�� cos �

�
=

�� cos �
2�

Substitute above two approximations in the equation 11

� =
�� ��� �−�/�

4��(��)�2 1 +
��� cos �

2�
� +

�
2

cos � − 1 −
��� cos �

2�
� −

�
2

cos �

� =
�� ��� �−�/�

4��(��)�2 � +
���� cos �

2�
+

�
2

cos � +
���2���2�

4�
− � +

���� cos �
2�

+
�
2

cos �

−
���2���2�

4�

� =
�� ��� �−�/�

4��(��)�2
2���� cos �

2�
+

2�
2

cos �

� =
�� ��� �−�/�

4��(��)�2
���� cos �

�
+ � cos �
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� =
�� � cos � ��� �−�/�

4��
���

���2�
+

1
���2

� =
�� � cos � ��� �−�/�

4��
1
��

+
1

���2

� =
�� � cos � ��� �−�/�

4���
1
�

+
�

���2 − 12

The above equation represents the retarded scalar potential.
The equation for E in terms of A and V is given by

� =− ��� − ∇� − 13
Express above equation in spherical coordinate system.

���� + ���� + ����

=− �� ���� + ���� + ���� −
��
��

�� +
1
�

��
��

�� +
1

� sin �
��
��

��

Equate individual components on both sides

�� =− ���� −
��
��

− 14

�� =− ���� −
1
�

��
��

− 15

�� =− ���� −
1

� sin �
��
��

− 16

The z-component of retarded vector potential (Az) given in equation 4 can be resolved
in to Ar, Aθ, and A� from the following figure.

θ

Az

Ar

Aθ

From the above figure
�� = �� cos � − 17
�� =− �� sin � − 18
�� = 0 − 19

Substitute equation 4 in equations 17 and 18

�� =
� � �� ��� �−�/�

4��
cos � =

� � cos � �� ��� �−�/�

4��
− 20

�� =−
� � �� ��� �−�/�

4��
sin � =−

� � sin � �� ��� �−�/�

4��
− 21

From equation 12
��
��

=
�
��

�� � cos � ��� �−�/�

4���
1
�

+
�

���2

��
��

=
�������

4���
��� �−�/� −

��
�

1
�

+
�

���2 + ��� �−�/� −1
�2 −

2�
���3
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��
��

=
���������� �−�/�

4���
−��
��

−
1
�2 −

1
�2 −

2�
���3

��
��

=
���������� �−�/�

4���
−��
��

−
2
�2 −

2�
���3

��
��

=−
���������� �−�/�

4���
��
��

+
2
�2 +

2�
���3 − 22

Substitute equations 20 and 22 in equation 14.

�� =− ��
� � cos � �� ��� �−�/�

4��
− −

���������� �−�/�

4���
��
��

+
2
�2 +

2�
���3

�� =−
��� � cos � �� ��� �−�/�

4��
+

���������� �−�/�

4���
��
��

+
2
�2 +

2�
���3

�� =
� cos � �� ��� �−�/�

4�
−���

�
+

1
��

��
��

+
2
�2 +

2�
���3

But � = 1
�2�

because � = 1
��

Then

�� =
� cos � �� ��� �−�/�

4�
−��

�
1

�2�
+

1
��

��
��

+
2
�2 +

2�
���3

�� =
� cos � �� ��� �−�/�

4���
−��
��

+
��
��

+
2
�2 +

2�
���3

�� =
� cos � �� ��� �−�/�

4���
2
�2 +

2�
���3

�� =
2� cos � �� ��� �−�/�

4���
1
�2 +

�
���3

�� =
� cos � �� ��� �−�/�

2���
1
�2 +

�
���3

�� =
� cos � �� ��� �−�/�

2��
1

��2 +
�

����3

�� =
� cos � �� ��� �−�/�

2��
1

��2 +
1

���3 − 23

From equation 12

��
��

=
�

��
�� � cos � ��� �−�/�

4���
1
�

+
�

���2

��
��

=
�� � −sin � ��� �−�/�

4���
1
�

+
�

���2

��
��

=−
�� � sin � ��� �−�/�

4���
1
�

+
�

���2 − 24

Substitute equations 21 and 24 in equation 15
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�� =− �� −
� � sin � �� ��� �−�/�

4��
−

1
�

−
�� � sin � ��� �−�/�

4���
1
�

+
�

���2

�� =
��� � sin � �� ��� �−�/�

4��
+

�� � sin � ��� �−�/�

4���
1
�2 +

�
���3

�� =
�� � sin � ��� �−�/�

4�
���

�
+

1
��

1
�2 +

�
���3

But � = 1
�2�

because � = 1
��

Then

�� =
�� � sin � ��� �−�/�

4�
��
�

1
�2�

+
1
��

1
�2 +

�
���3

�� =
�� � sin � ��� �−�/�

4��
��
�2�

+
1

��2 +
1

���3 − 25

Since �� = 0, The component �� is zero.
That is

�� = 0

Similarly let us derive the field components of H
We know the relation

� = ∇ × �
�� = ∇ × �

� =
1
�

∇ × �

Express above equation in spherical coordinate system

���� + ���� + ���� =
1
�

1
�2 sin �

�� ��� � sin ���
�
��

�
��

�
��

�� ��� � sin ���

���� + ���� + ���� =
1
�

1
�2 sin �

�� ��� � sin ���
�
��

�
��

0

�� ��� 0
Because �� = 0

Equate individual components on both sides

�� =
1

��2 sin �
�

��
0 − ��� 0 = 0

�� = 0

�� =−
1

��2 sin �
�

�
��

0 − �� 0 = 0

�� = 0
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�� =
1

��2 sin �
� sin �

�
��

��� −
�

��
��

�� =
1
��

�
��

��� −
�

��
�� − 26

From equation 21

��� =−
� � sin � �� ��� �−�/�

4�
�
��

��� =
�
��

−
� � sin � �� ��� �−�/�

4�
�
��

��� =−
� � sin � �� ��� �−�/�

4�
−

�ω
�

�
��

��� =
��� � sin � �� ��� �−�/�

4��
− 27

From equation 20
�

��
�� =

�
��

� � cos � �� ��� �−�/�

4��
�

��
�� =−

� � sin � �� ��� �−�/�

4��
− 28

Substitute equations 27 and 28 in equation 26

�� =
1
��

��� � sin � �� ��� �−�/�

4��
− −

� � sin � �� ��� �−�/�

4��

�� =
1
��

��� � sin � �� ��� �−�/�

4��
+

� � sin � �� ��� �−�/�

4��

�� =
� � sin � �� ��� �−�/�

��(4�)
��
�

+
1
�

�� =
� sin � �� ��� �−�/�

4�
��
��

+
1
�2 − 29

Finally the field components due to small electric dipole are given by

�� =
� cos � �� ��� �−�

�

2��
1

��2 +
1

���3

�� =
�� � sin � ��� �−�/�

4��
��
�2�

+
1

��2 +
1

���3

�� = 0
�� = 0
�� = 0
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�� =
� sin � �� ��� �−�/�

4�
��
��

+
1
�2

Filed components for radiation zone or far field components:
The general field components due to small electric dipole are given by

�� =
� cos � �� ��� �−�

�

2��
1

��2 +
1

���3

�� =
�� � sin � ��� �−�/�

4��
��
�2�

+
1

��2 +
1

���3

�� = 0
�� = 0
�� = 0

�� =
� sin � �� ��� �−�/�

4�
��
��

+
1
�2

We know that, the far field related to long distance and near field related to small
distance. If we observe the general filed components, they are proportional to the
terms 1

�
, 1

�2 ��� 1
�3. When the distance (r) is large, then the terms of the filed

components which depend upon 1
�2 ��� 1

�3 can be neglected. Therefore the field
components for the radiation zone are given by

�� = 0

�� =
�� � sin � ��� �−�/�

4��
��
�2�

=
���� � sin � ��� �−�/�

4���2�

=
���� � sin � ��� �−�/�

4����

�� = 0
�� = 0
�� = 0

�� =
� sin � �� ��� �−�/�

4�
��
��

=
��� sin � �� ��� �−�/�

4���

=
��� sin � �� ��� �−�/�

4��

Power radiated and radiation resistance due to small electric dipole:
The general equation for the power radiated due to any antenna is given by

� = ��� ∙ ��� − 1

Where Pav is the average poynting vector.
From the poynting theorem we have

��� =
1
2

� × � =
1
2

� � 2 − 2
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The magnetic field intensity due to small electric dipole for radiation zone is given by

� = �� =
��� sin � �� ��� �−�

�

4���
� =

�� sin � ��

4���
− 3

Substitute equation 3 in equation 2

��� =
1
2

�
�� sin � ��

4���

2

− 4
Substitute equation 4 in equation 1

� =
1
2

�
�� sin � ��

4���

2

∙ ���

But �� = �2 sin �����

� =
1
2

�
�� sin � ��

4���

2

�2 sin ������

� =
1
2

�
�2��

2 �2

16�2�2
0

2�
���

0

�
���3����

� =
1
2

�
�2��

2 �2

16�2�2 2�
4
3

� = �
�2��

2 �2

12��2 = �
�2��

2 �2

12�

 



12

2lIW m - 5

The above equation represents the power radiated by the small electric dipole.
In general the average power applied to the antenna is given by

� =
1
2

��
2 �� − 6

Where Im is the peak value of current applied to the antenna and Rr is the radiation
resistance.
Equate equations 5 and 6

1
2

��
2 �� =

� ����
2

12�
1
2

��
2 �� =

��2��
2 �2

12�

�� =
��2�2

6�
=

120�
6�

2�
�

2

�2

�� = 80�2 �
�

2

− 7
The above equation represents the radiation resistance of small electric dipole.
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RADIATION FROM HALF WAVE DIPOLE ORMONOPOLE
Field components due to half wave dipole or quarter wave monopole:
The field components due to half wave dipole can be derived from the following
figure.

z

dl=dzh

h

l=λ/2

r

x

y

z

θ

P

The current distribution along the half wave dipole is given by
� = �� sin � ℎ − � ��� � > 0 − 1
� = �� sin � ℎ + � ��� � < 0 − 2

The general equation for the retarded vector potential is given by

� =
�

4�
�
�� ��

The above equation can be written for the half wave dipole as

� =
�

4� −ℎ

0 �� sin �(ℎ + �) �−���

�� �� +
0

ℎ �� sin �(ℎ − �) �−���

�� ��

� =
���

4� −ℎ

0 sin �(ℎ + �) �−���

�� �� +
0

ℎ sin �(ℎ − �) �−���

�� �� − 3

From figure,

� = � − � cos �
� ≅ � �ℎ�� ����� �� �����

Substitute above relations in equation 3

� =
���

4� −ℎ

0 sin � ℎ + � �−�� �−� cos �

�
� �� +

0

ℎ sin � ℎ − � �−�� �−� cos �

�
� �� − 5

From figure,

ℎ =
�
4

Then

sin � ℎ + � = sin �ℎ + �� = sin
2�
�

�
4

+ ��
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= sin
�
2

+ �� = cos ��
sin � ℎ + � = cos �� − 6

Similarly
sin � ℎ − � = cos �� − 7

Substitute equations 6 and 7 in equation 5

� =
���

4� −ℎ

0 cos �� �−�� �−� cos �

�� �� +
0

ℎ cos �� �−�� �−� cos �

�� ��

� =
���

4�� −ℎ

0
cos �� �−�� �−� cos �� �� +

0

ℎ
cos �� �−�� �−� cos � ���

� =
���

4�� −ℎ

0
cos �� �−������� cos �� �� +

0

ℎ
cos �� �−������� cos ����

� =
����−���

4�� −ℎ

0
cos �� ���� cos �� �� +

0

ℎ
cos �� ���� cos ����

� =
����−���

4�� 0

ℎ
cos �� �−��� cos �� �� +

0

ℎ
cos �� ���� cos ����

When the limits are interchanged, the –ve sign to be added to the exponential term.

Let � =− � then
�� =− ��

−ℎ

0
cos �� ���� cos �� �� =

ℎ

0
cos �� ��� −� cos �� −��

=−
ℎ

0
cos �� �−��� cos �� ��

=+
0

ℎ
cos �� �−��� cos �� ��

� =
����−���

4�� 0

ℎ
cos �� �−��� cos � + ���� cos �� ��

� =
����−���

4�� 0

ℎ
cos �� cos �� cos � − � sin �� cos ��

+ cos �� cos � + � sin �� cos � ��

� =
����−���

4�� 0

ℎ
cos βz 2 cos �� cos � dz�

� =
����−���

4�� 0

ℎ
2 cos βz cos �� cos � dz� − 8

But
2 cos � cos � = cos � + � + cos � − �

The equation 8 becomes

� =
����−���

4�� 0

ℎ
cos �� + �� cos � + cos �� − �� cos � ���

� =
����−���

4�� 0

ℎ
cos �� 1 + cos � + cos �� 1 − cos � ���
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� =
����−���

4�� 0

ℎ=�/4
cos �� 1 + cos � �� +

0

ℎ=�/4
cos �� 1 − cos � ����

� =
����−���

4��
sin �� 1 + cos �

� 1 + cos �
0

�/4

+
sin �� 1 − cos �

� 1 − cos �
0

�/4

� =
����−���

4���

cos
�
2

cos �

1 + cos �
+

cos
�
2

cos �

1 − cos �

� =
����−��� cos

�
2

cos �

4���
1

1 + cos �
+

1
1 − cos �

� =
����−��� cos

�
2

cos �

4���
1 − cos � + 1 + cos �

1 + cos � 1 − cos �

� =
����−��� cos

�
2

cos �

4���
1 − cos � + 1 + cos �

1 − ���2�

� =
����−��� cos

�
2

cos �

4���
2

���2�

� = �� =
����−���

2���

cos
�
2

cos �

���2�
− 9

The above equation represents the retarded vector potential due to half wave dipole
Now let us concentrate only on far field components. We know that the radiation zone
contains only two components such as �� ��� ��. First let us find �� and then from
�� we can find ��

by using relation ��
��

= �

We know the relation
� = ∇ × �

�� = ∇ × �

� =
1
�

∇ × �

Express above equation in spherical coordinate system

���� + ���� + ���� =
1
�

1
�2 sin �

�� ��� � sin ���
�
��

�
��

�
��

�� ��� � sin ���

���� + ���� + ���� =
1
�

1
�2 sin �

�� ��� � sin ���
�
��

�
��

0

�� ��� 0
Because �� = 0

Equate individual components on both sides

�� =
1

��2 sin �
�

��
0 − ��� 0 = 0
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�� = 0

�� =−
1

��2 sin �
�

�
��

0 − �� 0 = 0

�� = 0

�� =
1

��2 sin �
� sin �

�
��

��� −
�

��
��

�� =
1
��

�
��

��� −
�
��

��

For radiation zone the term �
��

�� can be neglected because it will be proportional to
1/r2

Therefore

�� =
1
��

�
��

��� − 10

But
�� =− �� sin � − 11

Substitute equation 9 in equation 11

�� =−
����−���

2���

cos
�
2

cos �

���2�
sin �

�� =−
����−���

2���

cos
�
2

cos �

����
− 12

Substitute equation 12 in equation 10

�� =−
1
��

�
��

�
����−���

2���

cos
�
2

cos �

����

�� =−
1
�

�
��

���−���

2��

cos
�
2

cos �

����

�� =−
�� cos

�
2

cos � �−��� −��

2��� sin �

�� =
���

2��

cos
�
2

cos �

sin �
�−��� − 13

We know that,
��

��
= �

�� = ��� − 14
Substitute equation 13 in equation 14
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�� = �
���

2��

cos
�
2

cos �

sin � �−���

But
� = 120�

�� =
120� ���

2��

cos
�
2

cos �

sin �
�−���

�� =
�60��

�

cos
�
2

cos �

sin �
�−��� − 15

Power radiated and radiation resistance due to half wave dipole:
The general equation for the power radiated due to any antenna is given by

� = ��� ∙ ��� − 1

Where Pav is the average poynting vector.
From the poynting theorem we have

��� =
1
2

� × � =
1
2

� � 2 − 2
The magnetic field intensity due to hale wave dipole for radiation zone is given by

� = �� =
���

2��

cos
�
2

cos �

sin �
�−���

� =
��

2��

cos
�
2

cos �

sin �
− 3

Substitute equation 3 in equation 2

��� =
1
2

�
��

2��

cos
�
2

cos �

sin �

2

��� =
1
2

120�
��
2 ���2 �

2
cos �

4�2�2���2�

��� =
15��

2 ���2 �
2

cos �

��2���2�

��� =
15 2����

2 2
���2 �

2
cos �

��2���2�

��� =
30����

2 ���2 �
2

cos �

��2���2�
− 4

Substitute equation 4 in equation1

� =
30����

2 ���2 �
2

cos �

��2���2�
∙ ���

But �� = �2 sin �����
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� =
30����

2 ���2 �
2

cos �

��2���2�
∙� �2 sin �����

� =
30����

2 ���2 �
2

cos �

� sin �� ����

� =
30����

2

� 0

2�
��

0

� ���2 �
2

cos �

sin ��� ��

� =
30����

2

�
2�

0

� ���2 �
2

cos �

sin �� ��

� = 60 ����
2

0

� ���2 �
2

cos �

sin �� ��

In above equation the integral part can be evaluated by using either analytical
methods or numerical methods such as Simpson’s or Trapezoidal method. The value
of the integral part is equal to 1.219

� = 60 ����
2 1.219

� = 73 ����
2 − 5

The above equation represents power radiated due to half wave dipole.
We know that

� = ����
2 �� − 6

By comparing equations 5 and 6 we can say that the radiation resistance is
�� = 73 �

The radiation resistance due to quarter monopole is 36.5 Ω

LOOP ANTENNAS
Introduction:
Loop antenna is defined as a radiating coil of any convenient cross section of one or
more turns carrying RF (Radio Frequency) current. It may assume any shape such as
rectangular, square, triangular, hexagonal and circular. The following figure shows
the loop antennas of different shapes.

Square loop
Triangular loop

Rectangular loop Circular loop

Small Loop:
A loop antenna is said to be small if its cross sectional is small. Let us consider the
two cases of small loop antenna such as receiving case and transmitting case.
(i) Receiving loop antenna:
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To derive the equation for the e.m.f or voltage induced in the receiving loop antenna,
let us consider the rectangular loop antenna shown in the figure below.

z

zI

Incoming
 EM Waves

E1 E2

A B

CD

h

d

Fig: Loop antenna with rotational axis

For the sake of explanation of let us assume that, the incoming EM waves are
vertically polarized. The rectangular loop antenna can be imagined as a combination
of two vertical antennas (AD & BC) and two horizontal antennas (AB & CD). When
the axis of the plane of the loop is perpendicular with respect to the incoming EM
waves, then the two vertical antennas will receive the same amount of signal but the
resultant voltage induced is zero because the vertical antennas will be at equidistance
with respect to incoming waves. When the axis of the plane of the loop is in parallel
with incoming EM waves, then the there will be maximum induced voltage.
From the figure shown below we can find the voltage induced in the loop antenna.

ADBC

d

θ θ

Incoming EM Waves

d cosθ

d/2

The path difference between the waves due to antenna AD w.r.t center or waves due
to antenna BC w.r.t center is given by

���ℎ ���������� �. � =
�
2

���� − 1
The phase angle difference due to path difference is given by
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� =
2�
�

�. � =
2�
�

�
2

���� =
������

�
− 2

Le the incident electric field at the center of the two antennas is Emsinωt, then the
voltage induced in the antenna AD is given by

�1 = �� sin �� + � . ℎ − 3
Similarly the voltage induced in antenna BC is given by

�2 = �� sin �� − � . ℎ − 4
The resultant voltage induced is given by

� = �1 − �2 − 5
Substitute equations 3 and 4 in 5

� = �� sin �� + � . ℎ − �� sin �� − � . ℎ
� = ��ℎ ( sin �� + � − sin �� − �

� = ��ℎ �����. ���� + �����. ���� − (�����. ���� + �����. ����)
� = 2��ℎ �����. ���� − 6

Now substitute equation 2 in equation 6

� = 2��ℎ �����. ���
������

�
But when d << λ, then ��� ������

�
= ������

�

� = 2��ℎ �����.
������

�
� =

2�ℎ� ����
�

�������
� = �������

Where Vm called as magnitude of the induced voltage and is given by

�� =
2�ℎ� ����

�
�� =

2��� ����
�

��

Where A = hd is known as area of the loop and N is the no.of turns of the loop
antenna.
(ii) Transmitting loop Antenna:
To derive the far field components of the loop antenna under the transmitting mode,
let us consider the square loop located at the center of the spherical coordinate system
as shown in the figure below.

Er

Eφ

Eθ

x

y

z

Square Loop

r

P

A B

CD

 d

θ

Fig: Square loop in a spherical coordinate system

h
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BCAD

d

90-θ

Outgoing EM Waves

d cos(90-θ)

d/2

z

θ

From the second figure shown in above, we can derive the field components of the
loop antenna.
The path difference between the waves due to two antennas AD and BC is given by

���ℎ ���������� �. � = ���� 900 − � = � ���� − 1

� =
2�
�

�. � =
2�
�

� ���� = � ����� − 2
The total electric field at the receiving point due two antennas AD and BC is given by

�∅ = �0�−��/2 − �0���/2 =− �0 ���/2 − �−��/2

�∅ =−
2�
2�

�0 ���/2 − �−��/2 =− 2��0
���/2 − �−��/2

2� =− 2��0��� �/2 − 3

Substitute equation 2 in equation 3

�∅ =− 2��0���
� �����

2 =− 2��0
� �����

2 �ℎ�� � ≪ �
�∅ =− ��0�� ���� − 4

In above equation E0 is known as individual field component which can be obtained
from the short dipole.
We know that, the far field component of short dipole is

�� = �0 =
�60� � ℎ

��
− 5

Substitute equation 5 in equation 4

�∅ =− �
�60� � ℎ

�� �� ���� =
120�2 � � ����

��2 − 6

We know that
�
�

= �
�∅

��
= �

Then,

�� =
�∅

�
=

�∅

120�
− 7

Substitute equation 6 in equation 7
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�� =
�∅

120�
=

120�2 � � ����
��2

120� =
� � � ����

��2

Comparison of far fields of small loop and short dipole:
The following table gives the comparison of far fields of small loop and short dipole.
From the table it can be observed the following points.

(i) The field components of short dipole includes the parameter j indicates that,
the field components due to short dipole are in time phase quadrature as
compared with the filed components due to loop antenna.

(ii) The field components due to loop antenna are inversely proportional to the
square of the wave length λ where as the field components due to short
dipole are inversely proportional to wave length λ

Field Short dipole Loop antenna

Electric filed �� =
�60� � � ����

�� �∅ =
120�2 � � ����

��2

Magnetic filed �∅ =
� � � ����

2��
�� =

� � � ����
��2

Radiation Resistances and Directives of small and large loops (Qualitative
Treatment):
The radiation resistance of loop antenna is given by

�� = 31,200
��
�2

2

�ℎ�� �ℎ� ���� �� �����

�� = 592 �� �ℎ�� �ℎ� ���� �� �����
Where Cλ is known as circumference in wavelength. For circular loop Cλ = 2πa/λ
where ‘a’ is the radius of the loop.
The directivity of the loop antenna is given by

����������� � =
3
2

�ℎ�� �ℎ� ���� �� ����� �. � �ℎ�� �� < 1/3

����������� � = 0.68 �� �ℎ�� �ℎ� ���� �� ����� �. � �ℎ�� �� > 2
Applications of Loop Antennas:
The following are the list of applications of loop antennas

(i) In direction finding applications
(ii) Radio receivers
(iii)UHF transmitters
(iv)Aircraft receivers
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ARRAYS WITH PARASITIC ELEMENTS
Yagi - Uda Arrays:
Array is defined as the method of combining the radiations from the group or array of
antennas by involving the wave interference. Parasitic array or ‘array with parasitic
elements’ is an array which contains one driven element and number of parasitic or
passive elements. Example of parasitic array is the Yagi-Uda array. The Yagi-Uda
array is invented by S.Uda and H.Yagi. The structure of 3-element yagi uda array is
shown in the figure below.

Feed line

0.55λ

0.5λ

0.45λ

Reflector
Driven
element Director

Direction of
Desired 
radiation

Direction of
undesired 
radiation

Fig : 3-element yagi-uda array

Fig : Radiation pattern

Fig : Optical equivalent
Mirror

Source
Lens

The radiation pattern and optical equivalent also shown in the figure. The principle of
operation of the yagi-uda array can be explained as follows:

(i) 3-element Yagi-Uda antenna consists of one driven element, one reflector and
one director.

(ii) The input signal will be supplied to the driven element and the two passive
elements (reflector and director) are parasitically or electromagnetically
coupled to the driven element.

(iii)The function of the reflector is to reflect back the signal and the function of
the director is to further forward the signal in the forward direction.

(iv)The reflector having the nature of inductive where as the director having the
nature of capacitive. The reason for this is the length of the reflector is
greater than the driven element and the length of the director is smaller
than the driven element.

(v) By selecting the proper length of the elements and proper spacing between the
elements we can produce the highly directional beam.

(vi)The Yagi-Uda antenna is a hi9gh gain antenna. It provides the gain in the
order of 8 dB and Front to Back Ratio (FBR) of about 20 dB.

(vii) To achieve the greater directivity, the number directors can be increased.
(viii) The approximate formulae for the length of the driven element, reflector

and director is given by
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Length of the reflector = 500/f(MHz) feet
Length of the driven element = 475/f(MHz) feet
Length of the director = 455/f(MHz) feet

The practical structure of 6-element Yagi-Uda antenna is shown in the figure below.

Feed line

Reflector Driven element
Directors

Horizontal
support

Vertical
 support

Folded Dipoles &their characteristics:
A very important variation of conventional half wave dipole is the folded dipole
which is shown in the figure below.

I/2

I/2

λ/2

Fig : Folded dipole with current distribution and radiation pattern

The following are the important points to be noted about the folded dipole:
(i) Folded dipole is a combination of two half wave dipoles, one is continuous

and other is splitted at the center.
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(ii) The advantages of folded dipole as compared with conventional half wave
dipole are high input impedance, wide band in frequency and act as a built
in reactance compensations network.

(iii) The shape of radiation pattern due to the folded dipole is figure of eight shape
or doughnut shape.

(iv)The folded dipole with conductors of equal radius can provide impedance up
to 292 ohms and folded tripole (combination of three half wave dipoles)
can provide impedance up to 657 ohms.

The equation for the input impedance of the folded dipole is obtained from the
following figure:

V/2

V/2

I1

I2

a

�
2

= �1�11 + �2�12

But I1 = I2 because the two conductors are in series.
�
2

= �1�11 + �1�12 = �1 �11 + �12

When the spacing between the two conductors is small, then Z11 = Z12

�
2

= �1 �11 + �11 = 2�1�11

� =
�
�1

= 4�11 = 4 73 = 292 �ℎ��.

In general
� = �2�11

Where n represents the number of half wave dipoles used.
When the folded dipole is made with conductors of unequal radii, then the input
impedance can be obtained by the following formula.

� = �11 1 +
�2

�1

2

Where, r2 and r1 represent the radii of conductors.

SOLVED PROBLEMS
1.Find out the directivity or gain of short dipole or oscillating electric dipole
Ans: The directivity or directive gain is defined as

D = G =
Power density from the test anteena(Short dipole)

Power density from the reference antenna(Isotropic radiator)
� = ��

��
4��2

= 4��2 ��
��

------ 1

Where
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Pr=Average pointing vector or power density due to
short dipole

��
4��2 = power density radiated by the isotropic radiator.

r = distance from the transmitting antenna to the receiving point.
We know that,

�� =
1
2

� × �∗

�� = 1
2

� � ----- 2
But

�
�

= � �� � = �� ---- 3
Substitute equation 3 in equation 2

�� = 1
2

� � 2 ----- 4
The magnetic field intensity due to short dipole is given by

� = �∅ =
����� sin ���� �−�

�

4��
� =

���� sin �
4��

For maximum value of H, θ=900

� = ����
4��

--------- 5
Substitute equation 5 in equation 4

�� =
1
2

�
����
4��

2

=
1
2

�
�2��

2 �2

16�2�2

But β=2π/λ

�� =
1
2

�

2�
�

2

��
2 �2

16�2�2

�� = ���
2 �2

8�2�2 ------- 6
The power radiated is given by

�� = ����
2 �� --------- 7

Where Rr is the radiation resistance
But the radiation resistance due to short dipole is given by

�� = 80�2 �
�

2
------------ 8

Where l is the length of the short dipole.
Substitute equation 8 in equation 7

�� = ����
2 80�2 �

�

2

But ���� = ��
2

�� = ��
2

2
80�2 �

�

2
= 80��

2 �2�2

2�2 --- 9
Substitute equations 6 and 9 in equation 1, then

� = 4��2 ���
2 �2

8�2�2 ×
2�2

80��
2 �2�2

But  120
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� =
�

80�
=

3
2

= 1.5
The directivity in dB is given by

� = 10 log 1.5 = 1.76 ��
Therefore the gain or directivity of short dipole is 1.5 or 1.76 dB.
2. Calculate the maximum effective area of short dipole
Ans: Consider the short dipole shown in the figure 1.20 below. The short dipole is
used as the receiving antenna.

l

RL

x

y

z

Short dipole

Fig1.20:The short dipole with uniform current along its entire
               Length and terminated by load resistance RL

We know that the maximum effective area is
��� = �2

4���
-----1

The induced voltage (V) in a short dipole due to incident electric field (E) is given by
� = � ∙ � ----- 2

In above equation it is assumed that, the incident electric field is uniform about the
entire length of short dipole.
The pointing vector (P) is given by

� = � × � = �2

�
---- 3

Also the radiation resistance due to short dipole is given b y

�� = 80�2 �
�

2
---- 4

Substitute equations 2,3&4 in equation 1

��� =
� ∙ � 2

4 �2

� 80�2 �
�

2

��� =
�2�2��2

4�280�2�2

��� =
��2

4 × 80�2 =
120��2

4 × 80�2 =
3�2

8�
= 0.119�2

∴ ��� = 0.119�2

3. Calculate the directivity or gain of the half wave dipole
Ans: The half wave dipole is the antenna having the physical length of λ/2.
The directivity or directive gain is defined as
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D = G =
Power density from the test anteena(half wave dipole)

Power density from the reference antenna(Isotropic radiator)
� = ��

��
4��2

= 4��2 ��
��

------ 1

Where
Pr=Average pointing vector or power density due to

short dipole
��

4��2 = power density radiated by the isotropic radiator.
r = distance from the transmitting antenna to the receiving point.

We know that,

�� =
1
2

� × �∗

�� = 1
2

� � ----- 2
But

�
�

= � �� � = �� ---- 3
Substitute equation 3 in equation 2

�� = 1
2

� � 2 ----- 4
The magnitude of magnetic field intensity due to half wave dipole is given by































 sin

cos
2

cos

2 r
IH m

To have the maximum value for H, take θ=900, then above equation becomes
� = ��

2��
-- 5

Substitute equation 5 in equation4

�� =
1
2

�
��

2��

2

=
���

2

2 4�2�2

�� = ���
2

8�2�2 -- 6
The power radiated is given by

�� = ����
2 �� --------- 7

Where Rr is the radiation resistance
But the radiation resistance due to half wave dipole is given by

�� = 73� --- 8
Substitute equation 8 in equation 7, then

�� = ����
2 (73)

But ���� = ��
2

�� =
��

2

2

(73)

�� = 73��
2

2
-- 9

Substitute equations 6 and 9 in equation1

� = 4��2

���
2

8�2�2

73��
2

2

= 4��2 ���
2

8�2�2 ×
2

73��
2
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� =
�

73�
But η =120π

� =
120π
73�

=
120
73

= 1.64
The directivity in dB is given by

� = 10 log 1.64 = 2.148 ��
Therefore the gain or directivity of half wave dipole is 1.64 or 2.148 dB.
4. Calculate the maximum effective area of half wave dipole

We know that the maximum effective area is
��� = �2

4���
-----1

To find out the voltage induced in the half wave dipole due to incident electric field
we need to consider the current distribution on the half wave dipole which is shown in
the figure1.21 below

λ/2

RL
y

z

x
Half wave dipole

Fig1.21: Half wave dipole and its current distribution

+λ/4-λ/4

h=λ/4

dz

z

� = �� sin � ℎ − � ��� � > 0
� = �� sin � ℎ + � ��� � < 0

But h = λ/4

� = �� sin � ℎ − � = �� sin �
�
4 − � = �� sin �

�
4

− ��

� = �� sin
2�
�

�
4

− �� = �� sin
�
2

− ��
� = �� cos �� − 2

The above equation can also written as
�� = ��� cos ��

Or
�� = ��� cos �� − 3

We know that,
� = � ∙ �

Or
��� = � ∙ �� = � ∙ �� − 4

Substitute equation 4 in equation 3
�� = � ∙ �� cos ��
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�� = � ����� ��
Take integration on both sides

�� = � ����� ����

� =
−�/4

�/4
� ����� ���

� = 2
0

�/4
� ����� ���

� = 2�
�����

� 0

�/4

� =
2�
�

sin � �/4 − sin � 0

� =
2�
2�
�

sin
2�
�

�
4

− 0

� =
��
�

− 5

� = � × � =
�2

�
− 6

Substitute equation 5 and 6 in equation 1

��� =

��
�

2

4
�2

�
��

− 7

The radiation resistance due to half wave dipole is given by
�� = 73 � − 8

Substitute equation 8 in equation 7

��� =

��
�

2

4 �2

� (73)
=

�2�2�
4�2�2(73)

=
�2�

4�2(73)

But η = 120 π

��� =
�2120�
4�2(73)

= 0.13 �2

5. Calculate the effective length of the half wave dipole
Sol:
The effective length is given by

�� = 2
�����

� − 1

For half wave dipole
Rr = 73 Ω − 2

Aem = 0.13 λ2 − 3
Substitute equations 2 and 3 in equation 1

�� = 2
0.13 λ2 73

120�
= 0.3174 �
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6. Find out the directivity of isotropic radiator
Sol:
The formula for directivity is given by

� =
4�

���� ����
=

4�
4�

= 1
7. Calculate the maximum effective aperture of a microwave antenna which has
a directivity of 900.
Sol:
The relation between the directivity and effective area is given by

� = � =
4���

�2

�� =
� �2

4�
=

900 �2

4�
= 71.619 �2

8. An antenna has a radiation resistance of 72 ohms, a loss resistance of 8 ohms
and power gain of 12 dB. Determine the antenna efficiency and its directivity.
Sol:
Given data:

�� = 72 �, �� = 8�, �� = 12 �� = 15.85
The antenna efficiency factor is given by

� =
��

�� + ��
=

72
72 + 8

= 0.9

Antenna efficiency = 0.9 X 100 = 90%
The relation between the power gain and directive gain is given by

� =
��

��
=

��

�

�� = � =
��

�
=

15.85
0.9

= 17.611

Or
� = 10 log 17.611 = 12.458 ��

9. A Low frequency transmitting antenna has a radiation resistance of 0.5 ohms
and a total loss of 2.5 ohms. Calculate the radiated power, power input and
antenna efficiency if the current applied to the antenna is 100 A(rms).
Sol:
Given data:

�� = 0.5 �, �� = 2.5�, ���� = 100 �
We know that, the power radiated is given by

�� = ����
2 �� = 1002 0.5 = 5 ��

Power input is given by
�� = ����

2 �� = ����
2 �� + �� = 1002 0.5 + 2.5 = 30 ��

The antenna efficiency is given by

� =
��

�� + ��
× 100 =

0.5
0.5 + 2.5

× 100 = 16.6%

10. An antenna has a field pattern given by
  ,cos2 E for 00 900 

Find Half Power Beamwidth(HPBW)
Sol:

  ,cos2 E for 00 900 
At half power points, the electric field will be
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  707.0E
2cos707.0 

707.0cos 
  01 33707.0cos  

0663322  HPBW
11. An antenna has a field pattern given by

  ,2coscos  E for 00 900 
Find (a) Half Power Beamwidth(HPBW) and (b) Beamwidth between First
Nulls(FNBW)
Sol:

  ,2coscos  E for 00 900 
At half power points, the electric field will be

 
2

1707.0 E

 2coscos
2

1





cos2
12cos 








 




cos2
1cos2 1








 
'

1

cos2
1cos

2
1




By iterating with 0'  as a first guess,

 
011 5.22

2
1cos

2
1

0cos2
1cos

2
1
















 

Let 0' 5.22 , then

 
01 03.20

5.22cos2
1cos

2
1









 

Let 0' 03.20 , then

 
01 59.20

03.20cos2
1cos

2
1









 

Let 0' 59.20 , then

 
01 47.20

59.20cos2
1cos

2
1









 

Let 0' 47.20 , then

 
001 5.2047.20

47.20cos2
1cos

2
1









 

Therefore,
0' 5.20

(a) The Half Power Beamwidth is given by
0415.2022  HPBW
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(b) The First Null Beam Width (FNBW) is obtained as follows:
At FNBW, the electric filed will be zero.

  0E
 2coscos0 

02cos 
  01 900cos2  

045
2

90


0904522  FNBW
12. Find the number of square degrees in the solid angle Ω on a spherical surface
that is between θ = 200 and θ = 400 and between ϕ = 300 and ϕ = 700.
Sol:
We know that,

ds = r2 sin θ dθ d∅
Solid angle is given by

dΩ =
ds
r2

dΩ =
r2 sin θ dθ d∅

r2 = sin θ dθ d∅
dΩ = sin θ dθ d∅

Take integration on both sides

Ω = sin θ dθ d∅�

Ω =
20

40
sin θ dθ

30

70
d∅��

Ω = −cosθ 20
40 × ∅ 30

70

Ω = − cos 40 + cos 20 × 70 − 30 ×
π

180
= 0.121 steradians

Ω = 0.121 ×
180
π

2

= 397 square degrees
13. An antenna has a field pattern given by

  ,cos2 E for 00 900 
Find the beam area of this pattern
Sol:

  ,cos2 E for 00 900 
At half power points, the electric field will be

  707.0E
2cos707.0 

707.0cos 
  01 33707.0cos  

0663322  HPBW
��� = ∅�� = 660

The approximate formula for beam area is given by
ΩA = ���∅��
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ΩA = 66 × 66 = 4356 Square degrees
But one square radian is equal to 3283 square degrees.

ΩA =
4356
3283 = 1.33 steradian

14. A radio link has a 15-W transmitter connected to an antenna of 2.5 m2

effective aperture at 5 GHz. The receiving antenna has an effective aperture of
0.5 m2 and is located at a 15-km line-of-sight distance from the transmitting
antenna. Assume lossless, matched antennas, find the power delivered to the
receiver.
Sol:
Transmitted power (PT) = 15 W
Effective aperture of transmitting antenna (AeT) = 2.5 m2

Frequency of operation (f) = 5 GHz
Wavelength (λ) = c/f = (3X108)/(5X109) = 0.06
Effective aperture of receiving antenna (AeR) = 0.5 m2

Distance between transmitter and receiver (R) = 15 km

�� =
4����

�2

�� =
4����

�2
The power received by receiver is given by

�� = ������
�

4��

2

�� = ��
4����

�2
4����

�2
�

4��

2

�� = ��
������

�2�2

�� = 15 ×
2.5 × 0.5

152× 0.062

�� = 23��
15. An elliptically polarized wave traveling in the positive z direction in air has x
and y components.

�� = � ��� �� − �� �/�
�� = � ��� �� − �� + ��� �/�

Find the average power per unit area conveyed by the wave.
Sol:

�� = 3 sin �� − �� �/�
�� = 6 sin �� − �� + 750 �/�

From poynting theorem, the average poynting vector(Average power per unit area) is
given by

��� =
1
2

�2

�
=

1
2

��
2 + ��

2

�
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��� =
1
2

�2

�
=

1
2

×
32 + 62

377
= 60 ��/�2

16. Calculate the physical height of a half wave dipole (λ/2) having antenna Q of
30 and bandwidth of 10 Mhz.
Sol:

Quality factor (Q) = 30
Bandwidth (BW) = 10 MHz

BW
fQ 

HzBWQf 86 103101030 

m
f
c 1

103
103

8

8







The physical height of half wave dipole is

ml 5.0
2
1

2




17. A resonant half wave length dipole is made out of copper (σ = 10X107
siemen/m). Calculate the conduction dielectric radiation efficiency of the dipole
antenna at f = 100 MHz if the radius of the wire is r0 = 3 X 10-4 λ and radiation
resistance of the λ/2 dipole is 73 ohms.
Sol:

Conductivity (σ) = 10X107 siemen/m
Frequency (f) = 100 MHz
Wavelength is given by

m
f
c 3

10100
103

6

8







Radius of the wire is(r0 ) = 3 X 10-4 λ
Radiation resistance (Rr) = 73 ohms
The loss resistance at high frequency is given by




 222 00 r
lR

r
lRR slhf 







2
2

2
2/

0

f
r

Rl 










 698.0
10102

104101002
31032

2/3
7

76

4


lR

Antenna efficiency is given by

%052.99100
698.073

73100 






lr

r

RR
R

18. A dipole antenna with length equal to 25 cm and carrying a current of 2 A at
a frequency of 8.5 MHz radiates in to free space. Calculate the total power
radiated by that antenna.
Sol:
Given data:

����ℎ� �� �ℎ� ������ � = 25 �� = 0.25 �
������� �� = 2 �
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��������� � = 8.5 ���, � =
�
�

=
3 × 108

8.5 × 106 = 35.294 �

The power radiated due to short dipole is given by

� =
� ����

2

12� =
��2��

2 �2

12� =
�

2�
�

2

��
2 �2

12�

� =
120� × 4�2 × 22 × 0.252

12� × 35.294 = 0.0792 �����
19. At what frequency the 65 cm length antenna produces a radiation resistance
of 0.75 Ω
Sol:
Given data:

�����ℎ � = 65 �� = 0.65 �
��������� ���������� �� = 075 �

We know that,

�� = 80�2 �
�

2

= 80�2 �2

�2

�2 =
80 �2�2

��

� =
80 �2�2

��

But λ = c/f

�
�

=
80 �2�2

��

� = �
��

80 �2�2
= 3 × 108 0.75

80 �2 × 0.652 = 14.3 ���

20. Calculate the radiation resistance of a dipole antenna having length λ/8, if the
equivalent loss resistance accounting for the heat loss in the antenna due to finite
conductivity of the dipole is 1.5 Ω. Also find the efficiency of the antenna.
Sol:
Given data:

�����ℎ �� �ℎ� ������ � =
�
8

���� ���������� �� = 1.5 �

�� = 80�2 �
�

2

= 80�2 �2

�2

�� = 80�2

�
8

2

�2 = 98.75 �

Antenna efficiency is given by

% � =
��

�� + ��
× 100 =

98.75
98.75 + 1.5

× 100 = 98.5%

21. A radiating element of 1 cm carries an effective current of 0.5 Amp at 3 GHz.
Calculate the radiated power
Sol:
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Length of the element (l) = 1 cm = 0.01 m
Current (Im) = 0.5 Amp
Frequency (f) = 3 GHz
Wavelength is given by

m
f
c 1.0

103
103

9

8







The radiated power is given by

 











12

2

1212

22
2

2222 lI
lIlIW

m
mm











   
wW 986.0

12

01.05.0
1.0

2120 22
2
















22. Design 3 element Yagi-Uda array with frequency of operation 64 MHz.
Sol:

�����ℎ �� �ℎ� ��������� =
500

� ��� ���� =
500
64 = 7.812 ����

�����ℎ �� �ℎ� ������ ������� =
475

� ���
���� =

475
64

= 7.421 ����

�����ℎ �� �ℎ� �������� =
455

� ���
���� =

455
64

= 7.11 ����

23. Design Yagi-Uda antenna of six elements to provide a gain of 12 dBi if the
operating frequency is 200 MHz.

Sol:
Given

Frequency (f) = 200 MHz

� =
�
�

=
3 × 108

200 × 106 = 1.5 �

�����ℎ �� ��������� = 0.475 � = 0.475 × 1.5 = 0.7125 �
�����ℎ �� ������ ������� = 0.46 � = 0.46 × 1.5 = 0.69 �
�����ℎ �� ����� �������� = 0.44 � = 0.44 × 1.5 = 0.66 �

�����ℎ �� ������ �������� = 0.44 � = 0.44 × 1.5 = 0.66 �
�����ℎ �� �ℎ��� �������� = 0.43 � = 0.43 × 1.5 = 0.645 �
�����ℎ �� �����ℎ �������� = 0.40 � = 0.40 × 1.5 = 0.6 �

������� ������� ��������� ��� ������ ������� = 0.25 � = 0.25 × 1.5
= 0.375 �

������� ������� ������ ������� ��� ����� �������� = 0.31 � = 0.31 × 1.5
= 0.465 �

������� ������� ��� ��������� = 0.31 � = 0.31 × 1.5 = 0.465 �
�����ℎ �� �ℎ� ����� = 1.5 � = 1.5 × 1.5 = 2.25 �
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UNIT-2 (VHF, UHF AND MICROWAVE ANTENNAS)

Syllabus:Helical Antennas-Helical Geometry, Helix modes, Horn Antennas- Types,
Fermat’s Principle, Optimum Horns, Design considerations of Pyramidal Horns,
Micro strip Antennas- Introduction, features, advantages and limitations, Rectangular
patch antennas Geometry and parameters, characteristics of Micro strip antennas,
reflector antennas - Introduction, corner reflectors, parabola reflectors- geometry,
pattern characteristics, Feed Methods, Reflector Types - Related Features, Lens
Antennas - Geometry of Non-metallic Dielectric Lenses, Zoning , Tolerances,
Applications

HELICAL ANTENNAS
Helical Geometry:
The geometry of constructional features of helical antenna is shown in the figure
below.

A = N S

Coaxial Cable

Inner 
conductor Outer

conductor

Ground plane

S

l

D

d
L

Helix

Fig : Helical antenna

Fig : Radiation pattern

α

S

C = πD
L

Helical antenna consists of a helix of thick copper wire or tubing wound in the shape
of a screw thread and used as an antenna in conjunction with a flat metal plate called a
ground plate. It is the simplest antenna to produce the circularly polarized waves. It is
a broadband antenna. The physical parameters of the helical antenna are listed below:

C = Circumference of the helix
d = Diameter of the helix conductor
D = Diameter of the helix
A = NS = Axial length or length of the helix
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N = Number of turns
S = Spacing between the turns
L = Length of each turn
l = Spacing between the helix and the ground plate.
α = tan-1(S/C) = Pitch angel of the helix.

The pitch angle (α) of the helix is defined as the angle between the line Tangent to the
helix wire and the plane normal to the helix axis.
Helix modes:
Helical antenna can be operated in two modes such as

(i) Normal mode or perpendicular mode of operation
(ii) Axial mode or beam mode of radiation

Normal Mode: The helical antenna can be operated in the normal mode when the
dimensions of the helix are smaller than the wavelength (λ). The helical antenna is a
combination of loop antenna and short dipole as shown in the figure below.

Er

Eφ

Eθ

x

y

z

Heli
ca

l a
nt

en
na

r

P

θ

Fig: Helical antenna in a
spherical coordinate system

S

D

Fig : Loop when α = 00

Fig : Short dipole when α = 900

D

S

In this mode of operation, the direction of maximum radiation is in perpendicular or
in normal direction with respect to the helix axis. The shape of the radiation pattern
in this mode is bidirectional. When the spacing ‘S’ of the helical antenna tends to zero
or when the pitch angle is equal to 00, then the helix reduces to loop antenna as shown
in the figure above. Similarly when the diameter ‘D’ of the helix tends to zero or pitch
angle is equal to 900, then the helical antenna reduced to short dipole with length ‘S’.
Therefore the far field equations of the helical antenna van be obtained from the far
field equations of short dipole and loop antenna.
The electric filed component due to the short dipole of length ‘S’ is given by

�� =
�60� � ����

�
.
�
�

Similarly the electric field component due to the loop antenna is given by
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�∅ =
120�2 � �����

�
.
�
�2

Where A = area of the loop antenna.
For circular loop with diameter ‘D’ the area is given by � = ��2/4
The axial ratio (AR) of helical antenna is given by

�� =
��

�∅
=

��
2��

=
2��
�2�2 =

2��
�2

AR = 1, for circular polarization
AR > 1, for elliptical polarization
AR = 0, for linear horizontal polarization
AR = ∞, for linear vertical polarization

The radiation pattern of the helical antenna in the normal mode is shown in the figure
below.

Axial Mode: The helical antenna can be operated in the axial mode when the
dimensions of the helix are larger than the wavelength (λ). Axial mode is also known
as beam mode of radiation. In this mode the maximum radiation will be in the
direction of the helix axis. The radiation pattern produced in this mode is
unidirectional. This mode of operation is preferable used to produce the circular
polarization. The radiation pattern of the helical antenna under the axial mode is
shown in the figure below.

Fig : Radiation pattern
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Practical Design considerations for Monofilar Helical Antenna in Axial and
Normal Modes:
When the helical antenna is made from the single conductor, then it is known as
monofilar helical antenna. Practical design considerations of monofilar helical
antenna are given below.

Axial length (A) = N S
Spacing between the helix and ground plane (l) = S/2
Length of each turn (L) = �2 + �2

Circumference of the helix (C) = π D
Pitch angel (α) = tan-1(S/C)
Axial Ratio (AR) = 2Sλ/C2

Half Power Beam Width (HPBW) =
52
�

�3

��

Beam Width between First Nulls (BWFN) =
115
�

�3

��

Directivity (D) =
15 ���2

�3

HORN ANTENNAS
Types:
Horn antenna is a opened out or flared out waveguide. There are three advantages of
flaring, such as

(i) Impedance matching between waveguide and free space is obtained
(ii) Diffraction problem will be eliminated.
(iii)The EM waves can easily convert from guiding media (waveguide) into

unguiding media (free space).
The types of horn antennas are given by

(i) Sectorial H-Plane horn antenna
(ii) Sectorial E-Plane horn antenna
(iii)Pyramidal horn antenna
(iv)Exponentially tapered pyramidal horn antenna
(v) Conical horn antenna
(vi)Exponentially tapered conical horn antenna

The structures of all the above antennas are shown in the figure below.\
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L

θH θE

L

θH

θE

θH

θE

Fig(i) : Sectorial H-Plane
         Horn antenna Fig(ii) : Sectorial E-Plane

             Horn antenna

Fig(iii) : Pyramidal
         Horn antenna

Fig(iv) : Exponentially
 tapered Horn antenna

h
w

h
w

h
w

θ θ

Fig(v) : Conical horn antenna Fig(vi) : Exponentially
              Conical horn antenna

Fermat’s Principle and Optimum horns:
The statement of Fermat’s principle is “equality of physical path lengths or equality of
electrical path lengths”. To get the maximum filed strength at the receiving point, the
Fermat’s principle must be satisfied. In case of horn antenna, the Fermat’s principle is
not satisfied exactly because there is deviation (δ) between the waves at the center and
waves at the edges but satisfied with some relaxation. The pyramidal horn antenna
and its cross section is shown in figure below.
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θH

θE

Fig(iii) : Pyramidal
         Horn antenna

L
θ/2

L

δ

Fig : Cross section 

h

w

The relaxation is such that, the deviation (δE) along the E-Plane should not be greater
than 0.25λ and the deviation (δH) along H-Plane should not be greater than 0.4λ.
In case of horn antenna, the parameters flare angel (θ) and length (L) should be
properly selected otherwise certain problems will arise. When the flare angle (θ) is
large and length (L) is small, then there will be more deviation (δ), but the advantage
is the construction is easy. When the length (L) is large and flare angle (θ) is small,
then it is difficult to construct such large length but the advantage is less deviation (δ).
These two situations are shown in the figures below

L
θ/2

L

δ

Fig(i) : Cross section of Pyramidal
    Horn antenna when θ is large
     and L is small

Lθ/2

L

Fig(ii) : Cross section of Pyramidal
         Horn antenna when θ is small
         and L is large

δ

Therefore we need to compromise between these two satiations. That is we need to
select optimum values for flare angle and length. The equations for the optimum
values of deviation (δo) and length (L) is given by

�� =
�

���
�
2

− �

� =
�����

�
2

1 − ���
�
2
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Design considerations of Pyramidal Horns:
Pyramidal horn antenna is a combination of sectorial E-plane horn and sectorial H-
plane horn. Therefore designing of pyramidal horn is nothing but designing of
sectorial E-plane and sectorial H-plane horan antennas. Let us consider the designing
of these two antennas.
Sectorial E-Plane Horn antenna: The cross section of sectorial E-polane horn
antenna is shown in the figure below.

L
θE/2

L

δE

Fig : Cross section of Sectorial
         E-Plane Horn antenna

h

From the above figure,

cos
��

2
=

�
� + ��

�� = 2 cos−1 �
� + ��

Or

sin
��

2
=

ℎ/2
� + ��

�� = 2 ���−1 ℎ
2 � + ��

Or

tan
��

2
=

ℎ/2
�

�� = 2 tan−1 ℎ
2�

From figure,

� + ��
2 = �2 +

ℎ
2

2

�2 + ��
2 + 2��� = �2 +

ℎ2

4

� =
ℎ2

8��
Sectorial H-Plane Horn antenna: The cross section of sectorial H-polane horn
antenna is shown in the figure below.
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L
θH/2

L

δH

Fig : Cross section of Sectorial
         H-Plane Horn antenna

w

From the above figure,

cos
��

2
=

�
� + ��

�� = 2 cos−1 �
� + ��

Or

sin
��

2
=

�/2
� + ��

�� = 2 ���−1 �
2 � + ��

Or

tan
��

2
=

�/2
�

�� = 2 tan−1 �
2�

From figure,

� + ��
2 = �2 +

�
2

2

�2 + ��
2 + 2��� = �2 +

�2

4

� =
�2

8��
The Half Power Beam Width (HPBW) along E-Plane and H-plane directions are
given by

�� ���� =
56�
ℎ

������

�� ���� =
67�
�

������
The directivity of pyramidal horn antenna is given by

� =
7.5 ℎ. �

�2 =
7.5 �

�2
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The power gain (GP) of pyramidal horn antenna is given by

�� =
4.5 ℎ. �

�2 =
4.5 �

�2

MICROSTRIP ANTENNAS
Features:

(i) The microstrip antenna was first proposed by G.A.Deschamps in 1953.
(ii) Microstrip antennas are similar to patch antennas.
(iii)The microstrip antenna is contained conducting strip or patch suspended over

a ground plane
(iv)Microstrip antennas are simple to fabricate
(v) These antennas are constructed using lithographic patterning on a printed

circuit boards.
(vi)The simplest patch antenna uses a half wavelength long patch with a larger

ground plane.
(vii) The simple microstrip antenna generates a linearly polarized wave.
(viii) It is a narrowband, wide-beam antenna.
(ix)To achieve higher bandwidth, a relatively thick substrate is used.
(x) The microstrip antennas are often used where thickness and conformability to

the surface of mount or platform are the key requirements.
(xi)The microstrip antennas are available with different shapes such as square,

rectangular, circular, triangular or elliptical.
(xii) The size of the microstrip antenna is inversely proportional to its

frequency.
(xiii) The following figure1 illustrate different shapes of microstrip antennas.

x

y

z

W

L

Microstrip
feed

Rectangular
patch

Fig.1: Rectangular patch antenna

x

y

z

Circular
patch

Fig.2: Circular patch antenna

x

y

z

Triangular
patch

Fig.1: Triangular patch antenna

Advantages and limitations:
Advantages :

(i) Light weight
(ii) Smaller size
(iii)Lesser volume
(iv)Low profile planar configuration
(v) They can be easily molded to any desired shape
(vi)Simple to fabricate
(vii) Their fabrication process is compatible with Microwave Monolithic

Integrated Circuit (MMIC) and Optoelectronic Integrated Circuit (OEIC)
technologies.

(viii) These can support both linear and circular polarizations.
(ix)They are mechanically robust when mounted on rigid surfaces.
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(x) With microstrip antennas it is easy to form large arrays with half wavelength
or lesser spacing.

Limitations:
(i) Low bandwidth
(ii) Low efficiency
(iii)Low gain
(iv)Low power handling capacity
(v) Complicated design due to smaller size
(vi)These are resonant devices by its inherent nature
(vii) They suffer from the radiation effects due to feeds and junctions
(viii) These are poor end-fire radiators

Rectangular patch antennas- Geometry and parameters:
The basic structure of rectangular microstrip antennas is shown in the figure1 below.
The distribution of electric field in the patch antenna is shown in the figure 2 below.
The dimensions are shown in the figure above. The length of the strip is preferably
half wavelength. The strip also having thickness and width which will be smaller than
the length. The radiating edges are at the ends of L dimension which sets up the single
polarization.

x

y

z

Printed patch

Thin dielectric substrate
L

W

Non-radiating edges Radiating edges

Fig 1(a): Patch layout on a substrate Fig 1(b): Details of patch

Fig 1: Basic structure of a rectangular patch antenna

Conducting patch
L = λ/2

εrh

Fig 2(a): Sinusoidal variation of E

Conducting patch
L 

εrh

Fig 2(a): Uniform variation of E

Fig 2: Patch antenna with E field distribution

The geometry of microstrip antenna is shown in figure 3 below.

Microstrip 
transmission line

Microstrip or patch

εrDielectric substrate

Ground plane

W
L

t

Fig 3: Geometry of rectangular patch antenna
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The radiation that occurs at the ends of the W-dimension is very less and is referred to
as the cross polarization. In the radiation zone perpendicular to the substrate, the
radiation from two sides added up because the fields are in phase. In other directions
(off-bore-sight) the fields will cancelled. Therefore the radiation intensity of
microstrip antenna is depends upon the direction it is viewed as it has gain and
directivity. The rectangular shape is simplest and most widely used configuration for
fabrication of microstrip antennas.It is fed by microstrip transmission line. The
conducting strip, transmission line and the ground plane is made from good
conductors. The patch having the length L, width W and sitting on top of dielectric
substrate of thickness h with permittivity εr. The critical or center frequency of patch
antenna is given by

�� =
�

2� ��
=

1
2� �0���0

Where c is the velocity of light, ε0 and µ0 are the permittivity and permeability of free
space respectively and εr is the permittivity of the dielectric substrate. The expression
for dominant mode is given by

��,�� =
�

2 � + 2∆� ��,���

Where ΔL and ΔW are the incremental length and width whixh account for the
fringing of field at the respective edges. The radiation patterns of microstrip antennas
are shown in figure 4 below.

020400 -20 -40

θ

00 300

600

900-900

-600

-300

Fig 4(a): φ = 00

020400 -20 -40

θ

00 300

600

900-900

-600

-300

Fig 4(b): φ = 900

Fig 4: Radiation pattern for microstrip antenna

Characteristics of Micro strip antennas:
1. Radiation pattern: The following figure shows radiation pattern of microstrip

antenna in φ=0 direction and φ=900. The power radiated at 1800 is about 15dB
less than the power in the center of the beam i.e.at 900. The beam width is
about 650 and the gain is about 9 dBi.

020400 -20 -40

θ
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600
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-600

-300

Fig 4(a): φ = 00

020400 -20 -40

θ

00 300

600

900-900

-600

-300

Fig 4(b): φ = 900

Fig 4: Radiation pattern for microstrip antenna

2. Beam width: The microstrip antennas have very wide bandwidth, both in
azimuth and elevation.

3. Directivity: The directivity of microstrip antennas is given by

SJC
ET



� =
2ℎ2�0

2�'2�0
2

����0
Where h thickness of the substrate, Pr is the radiated power, W’ = W + h, η0 =
120π, K0 is the wave number and E0 is the magnitude of the z-directed electric
field.

4. Gain: The gain of the rectangular microstrip patch antenna will be in between
7 to 9 dB.

5. Bandwidth: The bandwidth decreases with increase of Quality factor. The
impedance bandwidth of a patch antenna is influenced by the spacing between
the patch and the ground palne. The bandwidth of the microstrip antenna is
given by

��������ℎ =
� − 1
�0 �

Where S is the voltage standing wave ratio and Q0 is the unloaded radiation
quality factor.
Quality factor: The microstrip antennas have a very high quality factor. The
quality factor ‘Q’ represents the losses associated with the antenna. When the
quality factor is
large then the bandwidth is low.

6. Efficiency: The loss factor of a microstrip antenna is given by
LT = Lc + Ld + Lr

Where Lc is the conductor losses, Ld is the dielectric losses and Lr is the
radiation losses.
The efficiency of the microstrip antenna is given by

� =
��

�� + �� + ��
Where Pr is the radiated power, Pc is the power dissipated due to conductor
losses, and Pd is the power dissipated due to dielectric.

7. Polarization: The main advantage of microstrip antenna is polarization
diversity. The microstrip antennas can be designed to generate EM waves with
different types of polarizations such as vertical, horizontal, circular
polarizations. Circular polarization can be obtained from the patch antenna by
exciting the square patch with two feeds with their inputs having 900 phase
shift.

8. Return loss: The return loss is defined as the ratio of the Fourier transforms of
the incident pulse and the reflected signal.

9. Radar Cross-section: The GPS guidance system requires low radar cross
section (RCS) platforms. A standard technique used to reduce the RCS of a
conventional patch antenna is to cover the patch with a magnetic absorbing
material.

Impact of different parameters on characteristics:
The different parameters of microstrip antenna like length (L), width (W), height of
the substrate (h), dielectric constant (εr), etc will affect the antenna properties.
Therefore the nature and quantum of impact of these parameters is to be properly
accounted for an efficient design. The dimensions of the patch or conducting strip will
control the resonant frequency of the antenna. The wider the patch becomes, the lower
will be the input impedance. The best choice for the dimension W is given by

� =
�

2�0 �� + 1 /2
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The permittivity (εr) of substrate will controls the fringing field. Lower the εr, wider
more will be the fringing and better will be the radiation. The antenna bandwidth and
efficiency will be high when the εr is low. Therefore the value of εr should be properly
selected. The equation for the length (L) is given by

� =
1

2�� �0���0

REFLECTOR ANTENNAS:
Introduction:

(i) Reflectors are made from good conductor.
(ii) Reflectors are used to modify the radiation pattern of the antenna.
(iii)The reflectors are also used to eliminate the back lobe radiation
(iv)The reflectors are used to convert the bidirectional radiation pattern in to

unidirectional radiation pattern.
(v) There are various types of reflectors such a flat sheet reflector, thin linear

reflector, Corner reflector, parabolic reflector, elliptical reflector, circular
reflector, etc.

(vi)The structure of various types of reflectors are shown in the figure below

(a) Large flat sheet 
       reflector

(a) Small flat sheet 
       reflector

(a) Thin linear reflector

β

(d) Active corner reflector

900

(e) Passive corner or retro reflector

Dr

Dr

Dr Dr
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Dr

(f) Parabolic reflector

Dr

(g) Elliptical reflector

FLAT SHEET REFLECTORS:
(i) When a flat metal sheet is used at backside of the antenna (driven element) to

reflect back the signal then it is known as flat sheet reflector.
(ii) The structure of flat sheet reflector antenna is shown in figure below.

 flat sheet reflector

Dr

(iii)The reflector antennas will be analyzed by using the method of images.

d
Dr

Image

Sheet reflector

d

(iv)Flat sheet reflector antenna can be analyzed by imagining as a combination of
two antennas separated by certain distance (d).

(v) A large flat sheet reflector can convert bidirectional pattern in to unidirectional
pattern.

(vi)The distance(d) between the reflector and the driven element will decide the
directional properties of antenna
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CORNER REFLECTORS:
(i) When two flat metal sheets are meeting at an angle or corner, then it is known

as corner reflector antenna.
(ii) The basic structure of corner reflector antenna is shown in the figure below.

β

λ/2

Dr

Fig: Corner reflector antenna

Fig: Radiation pattern

(iii)There are two types of corner reflector antennas such as active corner reflector
antenna and passive corner reflector antenna.

(iv)The active corner reflector contains the driven element, where as passive
corner reflector do not contain the driven element.

(v) The corner angle β is given by

� =
1800

�
Where n = an integer = 1,2,3,……

(vi)When corner angle is equal to 1800(when n = 1), then it is called as flat sheet
reflector.

(vii) When the corner angle is equal to 900 (when n = 2), then it is known as
square corner reflector.

Square corner reflector:
 The structure of square corner reflector is shown in the figure below

900

λ/2

Dr

Fig: Square Corner reflector antenna

Fig: Radiation pattern
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 The square corner reflector antenna contains corner reflector and driven
element.

 The driven element will be preferably half wave dipole.
 A square corner reflector without driven element is called passive reflector or

retro reflector.
 As per the method of images, square corner reflector can be imagined as

combination of four antennas (three images and one driven element) as shown
in figure below.

Dr
12

3

4

-

-

+ +900

dd

 It is a combination of two two-element arrays.
 The gain of square corner reflector is derived as follows:

The filed pattern Eφ(θ) in the horizontal plane at a large distance r from the antenna is
given by

�� � = �⃓�1 ��� ������ − ��� ������ − (1)
Where �⃓ is the constant involving distance r
I1 is the current in each element, β = 2π/λ called phase constant, d is the distance
between the driven element and the corner.
The terminal voltage at the centre of the driven element (half wave dipole) is given by

�1 = �1�11 + �2�12 − �1�13 − 1�14
But Z13 = Z14,
Then �1 = �1 �11 + �12 − 2�14
Where Z11 is the self impedance of driven element, Z12 is the mutual impedance
between the element 1 and 2, Z14 is the mutual impedance between element 1 and 4.
The above equation can also be written as

�1 = �1 �11 + �12 − 2�14
Now if P be the power supplied to the driven antenna, then

� = �1
2�

�1 =
�
� =

�
�11 + �12 − 2�14

− (2)

By substituting equation (2) in equation (1),

�� � = �⃓ �
�11 + �12 − 2�14

× ��� ������ − ��� ������ − (3)

When the reflector is removed then equation (3) becomes

�� � �/2 = �⃓ �
�11

− (4)
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Above equation represents the electric field strength of half wave dipole which will be
used as the reference for obtaining the gain of the corner reflector antenna. The ratio
between the equations (3) and (4) gives the gain of the square corner reflector antenna
and is given by

� =
�� �

�� � �/2
=

�11

�11 + �12 − 2�14
× ��� ������ − ��� ������

In above equation the term ��� ������ − ��� ������ is called as pattern factor

and the term �11
�11+�12−2�14

is called as coupling factor.

Design consideration of square corner reflector:
The dimensions of the square corner reflector is shown in the figure below

d
Da

Dr

L

L

From the above figure the following formulae can be deduced

� =
�
2

� = 2�
�� = �2 + �2 = � 2 = 1.414 �

�� = 1.414 � = 1.414 2� = 2.828 �
Effect of spacing between the driven element and corner of the reflector (d) on
the pattern:
When the spacing (d) between the driven element and corner of the reflector is varied,
the pattern characteristics such as beam width, gain, minor lobes, etc will be affected.
This effect can be observed from the following figure;

0.5λ
Dr

1 λ
Dr

1.5λ
Dr

Fig(a): When d = 0.5 λ

Fig(b): When d = 1 λ
Fig(c): When d = 1.5 λ
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Retro or passive Square corner reflector:
 The square corner reflector without any driven element is known as retro

reflector of passive square corner reflector.
 The structure of passive square corner reflector is shown in the following

figure

900

 Fig:Passive corner or retro reflector

 The corner angel of retro reflector is 900.
 The retro reflector will be used as the target for the radar system.

PARABOLA REFLECTORS:
Geometry:

 The geometry or constructional features of parabola reflector is shown in the
figure below.

FO OI

P1

P2

P3

f

P1
I

P2
I

P3
I

x

y

D

 In above figure, OF represents Focal length (f), F is called Focus, O is called
Vertex, D is called Directrix or aperture size and OO1 is called axis of
parabola.

 Parabola is defined as the locus of a point which moves in such a way that, its
distance from a fixed distance called focus plus its distance from a straight line
called directrix is constant i.e.

��1 + �1�1
⃓ = ��2 + �2�2

⃓ = ��3 + �3�3
⃓ = ��������

 The equation of parabola in terms of its coordinates is given by
�2 = 4��

 The ratio of focal length (f) to Aperture size (D) is known as f over D ratio or
simple f/D.
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 When a parabola is rotated about its axis OO1, then it is known as paraboloidal
reflector.

 The parabola is a two dimensional and paraboloid is three dimensional.
 The structure of paraboloidal reflector is shown in the figure below.

Dr R

Fig: Paraboloidal reflector

Fig: Radiation Pattern

 The equation of the paraboloidal reflector is given by
�2 + �2 = 4��

Pattern characteristics:
 The parabolic reflector converts spherical wavefront into plane wavefront as

shown in the figuer below.
Spherical 
wavefront

Plane 
wavefront

 It will convert bidirectional radiation pattern in to unidirectional pattern.
 The radiation pattern characteristics or directional characteristics of reflector

antenna depend upon the f over D ratio.
 When f/D ratio is small (as shown in figure below), then all the waves radiated

by the driven element will be reflected by the reflector, but uniform
illumination of reflector by the source (driven element) is not possible.

f F

Fig: f/D < 1/4
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 When f/D ratio is large as shown in the figure below, some of the waves will
escape without reflection by the reflector and will constitute a spill over.

f F

Fig: f/D > 1/4

Spillover

F

 Practically f/D ratio will be selected in between small and large, typically f/D
=1/4 as shown in the figure below.

f F

Fig: f/D = 1/4

 f over D ratio of parabolic reflector antenna is given by
�
�

=
1
4

���
�
2

= 0.25 cot (�/2)

 The HPBW(Half Power Beam Width) of parabolic reflector with circular
aperture is given by

���� =
58�
� ������

 The BWFN (Beam Width between First Nulls) of a parabolic reflector with
circular aperture is given by

���� =
140�

�
������

 The directivity of a parabolic reflector with uniform illumination is given by

����������� = 9.87
�
�

2

Where D represents the diameter of the circular aperture.
Feed Methods:

 Feed is nothing but a driven element. An ideal feed is one which illuminates
the reflector uniformly.

 There are different types of methods for feeding the parabolic reflector
antenna such as Dipole end fire feed, Horn feed, Cassegrain feed and Offset
feed.

 The geometry of dipole end fire feed is shown in the following figure.
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Dr R

Fig: Dipole end fire feed

 In dipole end fire feed, the driven element is a two-element end fire array.
 With dipole feed, the driven element should be located at focus only.
 The most common feed method for paraboloid reflector is horn feed which is

shown in the figure below.

Fig: Horn feed

 In horn feed method, the horn antenna is used as the driven element.
 The horn antenna will be located at the focus such that, it can illuminate the

reflector uniformly.
 The horn antenna will be located at the focus with the help of waveguide

support.
 The drawback of horn feed is, the waveguide support will obstruct the waves

which will affect the radiation pattern.
 In dipole feed and horn feed, the spillover will be present.
 To avoid the drawbacks of dipole feed and horn feed the cassegrain feed will

be used
 The geometry of cassegrain feed is shown in the figure below.

Primary reflector
(Parabola)

Secondary reflector
(Hyperbola)

Blocked or
Obstructed rays

Horn feed

Fig: Geometry of cassegrain feed
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 In cassegrain feeding, one more reflector called secondary reflector
(preferably hyperbola) in addition to the primary reflector (Parabola) will be
used.

 In cassegrain feed, the driven element can be located at our convenient
location (preferably it will be located at vertex).

 The major advantages of cassegrain feed over the other methods are
(i) Reduction in spill over and minor lobe radiation
(ii) Ability to get an equivalent focal length much greater than the physical

length.
(iii) It allows us to place the feed at a convenient location

 The major drawback of cassegrain feed is, aperture blocking i.e. some of the
area (aperture) of parabola is blocked by the secondary reflector hyperbola.

 To eliminate the drawback of cassegrain feeding, an offset feeding will be
used.

 The structure of offset feed method is shown in figure below

Fig: Offset feed

 In offset feeding, the horn antenna (driven element) will be arranged to
illuminate only half of the parabola.

REFLECTOR TYPES - RELATED FEATURES:
 There are many types of reflectors such a flat sheet reflector, thin linear

reflector, Corner reflector, parabolic reflector, elliptical reflector, circular
reflector, etc.

 The structures of various types of reflectors are shown in the figure below.

(a) Large flat sheet 
       reflector

(a) Small flat sheet 
       reflector

(a) Thin linear reflector

β

(d) Active corner reflector

900

(e) Passive corner or retro reflector

Dr

Dr

Dr Dr
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Dr

(f) Parabolic reflector

Dr

(g) Elliptical reflector

 The important features of reflector antennas are given by
(i) Reflectors are made from good conductor.
(ii) Reflectors are used to modify the radiation pattern of the antenna.
(iii) The reflectors are also used to eliminate the back lobe radiation
(iv) The reflectors are used to convert the bidirectional radiation pattern in

to unidirectional radiation pattern.
(v) The passive corner reflector called retro reflector will be used as target

for the radar system.
(vi) Parabolic reflectors will be used to convert spherical wavefront into

plane wavefront.

LENS ANTENNAS
Basic Principle:

 Lens antennas are made from the lenses, preferably with concave and convex
lenses.

 The collimating action of lens antenna can be understood from the following
figure.

Lens

Focal point

Focal length

Collimated rays
(parallel rays)

Spherical
wavefront

Plane 
wavefront

 Assuming the source or driven element at focal point at a distance of focal
length, along the lens axis, it is seen that collimated or parallel rays are
obtained on the right side of the lens.

 An optical lens operates by virtue of having a refractive index more than the
unity.

 The principle of “equality of path length” called Fermat’s principle will be
applicable to then lens antennas.

 Lens medium can be used either to increase the speed of the waves or to
decrease the speed of the waves.

Geometry of Non-metallic Dielectric Lenses:
 Basically there are two types of lens antennas such as Dielectric lens (or H-

plane metal plate lens or Delay lens) and E-plane metal plate lens.
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 The dielectric lens antennas are sub divided in to two types such as Non-
metallic dielectric type and Metallic or Artificial dielectric type of lens.

 Non-metallic dielectric lens antenna will be made from Plano-concave lens.
 The geometry or constructional features of non-metallic dielectric lens antenna

is shown in the figure below.

L x
θ

r
o

P

S Q

PI

QI

Primary antenna or
source

 The non-metallic dielectric lens will reduce the velocity of the waves such that
equality of path length will be satisfied.

 The equation for the contour of the lens will be obtained as follows:
From figure,

OP + PP’ = OS + SQ’ = OS + SQ + QQ’ but PP’ = QQ’
Then OP = OS + SQ

�
�

=
�
�

+
�
�

� = � +
�
�

� = � + ��
But

� = ����� − �
� = � + � ����� − �

� =
� � − 1

����� − 1
Where � = �

�
is called as refractive index of the lens medium.

The above equation represents the equation of hyperbola whose focal length is
L and radius of curvature (R). Where R = L(μ-1).

Zoning:
 The process of reducing the size by removing certain portions of the lens

antenna is called lens zoning.
 At low frequencies, the size of the lens antenna becomes bulky, because the

size of the lens is inversely proportional to the frequency.
 The structures of zoned or stepped lens are shown in the figure below.

Fig: Zoned or stepped lens dielectric lenses

t

 The thickness of stepped or zoned lens is given by
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� =
�

� − 1
 The zoned lens antenna is depends upon frequency. The zoned lens antennas

can be used at low frequencies also.
Tolerances:
 Two important parameters to be considered while designing the lens antenna

are thickness of the lens and refractive index of the lens medium.
 If there is any deviation in thickness from the ideal contour and any variations

in the refractive index of the lens, there will be different path length of the
waves passing through the lens. As a result equality of path length will not be
satisfied.

 Therefore, there must be allowable variation to both thickness and refractive
index.ie. Tolerances on thickness and refractive index should be considered.

 Tolerance on thickness(Δt) is given by

∆� =
�0

32 � − 1
=

0.03�0

� − 1
 The tolerance on the index of refraction or refractive index (μ) is given by

∆� =
0.03
��

Where tλ is the thickness of lens in free-space wavelength.
 Following table gives the tolerances on thickness and refractive index of

various lens antennas:

Applications of Lens antennas:
The applications of Lens antennas are given by
(i) These are suitable for above 3 GHz frequency.
(ii) Used like the wideband antenna.
(iii) These are used mainly for microwave frequency applications.

S.No Type of Antenna Type of tolerance Amount of
tolerance(rms)

1 Dielectric lens(unzoned)
Thickness

0.03�0

� − 1

Index of refraction
3

���
%

2 Dielectric lens(zoned)
Thickness 3%

Index of refraction
3(� − 1)

�
%

3 E-plane metal plate
lens(unzoned)

Thickness
0.03�0

1 − �

Plate spacing
3�

1 − �2 ��%

4 E-plane metal plate
lens(unzoned)

Thickness 3%

Plate spacing
3�

1 + �
%
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(iv) This antenna’s converging properties can be used to develop a high range of
antennas called parabolic reflector antennas, so these are extensively used within
satellite communications.
(v) These are utilized as collimating elements within high-gain microwave systems
like radio telescopes, millimeter wave radar & satellite antennas.

Solved Problems
1. Calculate the directivity of 20 turn helix having α = 120, circumference equal
to one wavelength.

Sol:
Given data:

No.of turns (N) = 20
Pitch angel (α) = 120

Circumference (C) = 1 λ

� = tan−1 �
�

� = �. tan � = � tan 120 = 0.2126 �
The directivity of helical antenna is given by

� =
15 � � �2

�3 =
15 × 20 × 0.2126� × �2

�3 =
300 × 0.2126�3

�3 = 63.78

� = 10 log 63.78 = 18 ��
2. Design a helical antenna to produce a circularly polarized waves for the
following parameters of the helix

Circumference of helix = 2λ
No,of turns = 15

Sol:
Given data:

Circumference of helix(C) = 2λ
No,of turns (N) = 15
Axial Ratio (AR) = 1 for circular polarization

�� = 1 =
2��
�2�2 =

2��
�2

2�� = �2

� =
�2

2�
=

2λ 2

2�
= 2�

� = ��

� =
�
�

=
2�
�

= 0.636 �
�����ℎ �� �ℎ� ℎ���� � = �. � = 15 × 2� = 30�

�����ℎ �� ���ℎ ���� � = �2 + �2 = 2� 2 + 2� 2 = 2.828 �
3. Design a helical antenna for the frequency of 320 MHz to produce circularly
polarized waves for the following parameters of helix

Diameter of helix = 0.56 m
No.of turns = 20

Sol:
Given data:

Frequency (f) = 320 MHz

� =
�
�

=
3 × 108

320 × 106 = 0.9375 �
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Diameter of helix = 0.56 m
No.of turns = 20

Axial Ratio (AR) = 1 for circular polarization
� = � � = � × 0.56 = 1.76 �

�� = 1 =
2��
�2�2 =

2��
�2

2�� = �2

� =
�2

2�
=

1.76 2

2 × 0.9375
= 1.65 �

� = tan−1 �
�

= tan−1 1.65
1.76

= 43.150

�����ℎ �� �ℎ� ℎ���� � = �. � = 20 × 1.65 = 33 �
�����ℎ �� ���ℎ ���� � = �2 + �2 = 1.65 2 + 1.76 2 = 2.412 �

4. Design helical antenna to produce the elliptically polarized waves for the
following parameters of helix

Axial Ratio = 1.5
No.of turns = 18
Diameter of the helix= 0.5 m
Frequency = 10 MHz.

Sol:
Given data:

Axial Ratio = 1.5
No.of turns = 18
Diameter of the helix = 0.5 m
Frequency = 10 MHz.

� =
�
�

=
3 × 108

10 × 106 = 30 �

� = � � = � × 0.5 = 1.57 �

�� = 1.5 =
2��

�2�2 =
2��
�2

� =
1.5 × �2

2�
=

1.5 1.57 2

2 × 30
= 0.061 �

�����ℎ �� ���ℎ ���� � = �2 + �2 = 0.061 2 + 1.57 2 = 1.57 �
�����ℎ �� �ℎ� ℎ���� � = �. � = 18 × 0.061 = 1.098 �

� = tan−1 �
�

= tan−1 0.061
1.57

= 2.220

5. Find the values of D, S, α, L of helical antenna if the frequency is 312 MHz,
circumference is 1.72 m and length of the helix is 35 m having 20 turns.

Sol:
Given data:

Frequency (f) = 312 MHz

� =
�
�

=
3 × 108

312 × 106 = 0.96 �

Circumference of helix(C) = 1.72 m
Length of helix (A) = 35 m

No.of turns (N) = 20
� = ��

� =
�
�

=
1.72

�
= 0.547 �
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� = ��

� =
�
�

=
35
20

= 1.75 �

� = tan−1 �
�

= tan−1 1.75
1.72

= 45.50

�����ℎ �� ���ℎ ���� � = �2 + �2 = 1.75 2 + 1.72 2 = 2.453 �
6. Find the values of C, D, S, A, L of helical antenna if the frequency is 1.5 GHz,
pitch angel α = 44.30 and no.of turns is 25 with AR = 1

Sol:
Given data:

Frequency (f) = 1.5 GHz

� =
�
�

=
3 × 108

1.5 × 109 = 0.2 �

Pitch angel (α) = 44.30

No.of turns (N) = 25
Axial Ratio (AR) = 1

�� = 1 =
2��
�2�2 =

2��
�2

2�� = �2

� =
�2

2�

� = 44.30 = tan−1 �
�

= tan−1 �2

2� �
= tan−1 �

2�

44.3 = tan−1 �
2 × 0.2

� = 0.4 tan 44.3 = 0.39

� =
�
�

=
0.39

�
= 0.12 �

� =
�2

2�
=

0.39 2

2 × 0.2
= 0.38 �

� = �. � = 25 × 0.38 = 9.5 �
� = �2 + �2 = 0.38 2 + 0.39 2 = 0.54 �

7. Calculate the power gain of an optimum horn antenna approximately with a
square aperture of 10λ on a side

Sol:
Give data:

Side of the horn antenna = 10 λ
The power gain of horn antenna is given by

�� =
4.5 �

�2 =
4.5 × 10� × 10�

�2 = 450

�� = 10 log 450 = 16.53 ��
8. Find out the length L, width W and flare angles �� and �� of a pyramidal
horn antenna for which the mouth height h = 10λ. The horn is fed by a
rectangular waveguide with TE10 mode.

Sol:
Given data:

����ℎ ℎ���ℎ� ℎ = 10�
Let
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�� = 0.25 � ��� �� = 0.4�

� =
ℎ2

8��
=

10� 2

8 × 0.25�
= 50�

� =
�2

8��

� = 8��� = 8 × 0.4� × 50� = 12.65 �

�� = 2tan−1 ℎ
2� = 2tan−1 10�

2 × 50�
= 2 × 5.710 = 11.420

�� = 2 tan−1 �
2�

= 2 tan−1 12.65�
2 × 50�

= 2 × 7.20 = 14.40

9. (a) Determine the length L, H-plane aperture and flare angles �� and �� (in
the E and H planes respectively) of a pyramidal horn for which E-plane aperture
aE = 10λ. The horn is fed by a rectangular waveguide with TE10 mode. Let δ = 0.2
λ in the E-plane and 0.375 λ in the H-plane (b) What are the beamwidths (c)
What is the directivity

Sol:
Given data:

E-plane aperture (aE = h) = 10λ
�� = 0.2� ��� �� = 0.375�

(a)

� =
ℎ2

8��
=

10� 2

8 × 0.2�
= 62.5�

� =
�2

8��

� = 8��� = 8 × 0.375� × 62.5� = 13.7 �

�� = 2tan−1 ℎ
2�

= 2tan−1 10�
2 × 62.5�

= 2 × 4.570 = 9.10

�� = 2 tan−1 �
2�

= 2 tan−1 13.7�
2 × 62.5�

= 2 × 6.250 = 12.50

(b)

�� ���� =
56�
ℎ

������ =
56�
10�

= 5.60

�� ���� =
67�
�

������ =
67�

13.7 �
= 4.90

(c)
Directivity

� =
7.5 ℎ. �

�2 =
7.5 × 10� × 13.7 �

�2 = 1027.5

� = 10 log 1027.5 = 30.1 ��
10. Find out the power gain in dB of a paraboloidal reflector of open mouth
aperture 10λ

Ans:
Given

Mouth aperture (D) = 10λ
Assume driven element is dipole (ηap = 0.65)
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�� = � =
4���

�2

��� �� = ����� = 0.65
��2

4

� =
4�
�2 × 0.65

��2

4 = 6.4
�
�

2

�� = 6.4
10�
�

2

= 640
�� = 10 log 640 = 28 ��

11. Find out the beam width between first nulls and power gain of a 2 m
paraboloid reflector operating at 6000 MHz.

Ans:
Given

Diameter (D) = 2 m
Frequency (f) = 6000 MHz

� =
�
�

=
3 × 108

6000 × 106 = 0.05 �

���� =
140 �

�
=

140 × 0.05
2

= 3.5 ������
Assume driven element is dipole (ηap = 0.65)

�� = � =
4���

�2

��� �� = ����� = 0.65
��2

4

� =
4�
�2 × 0.65

��2

4
= 6.4

�
�

2

�� = 6.4
2

0.05

2

= 10240
�� = 10 log 10240 = 40 ��

12. A parabolic antenna having a circular mouth is to have a power gain of 1000
at λ = 10 cm. Estimate the diameter of the mouth and half power beam width of
the antenna

Ans:
Given

Power gain (Gp) = 1000
� = 10 �� = 0.1 �

Assume driven element is dipole (ηap = 0.65)

�� = � =
4���

�2

��� �� = ����� = 0.65
��2

4

�� =
4�
�2 × 0.65

��2

4
= 6.4

�
�

2

1000 = 6.4
�2

0.12
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� =
1000 × 0.12

6.4
=1.25 �

���� =
58�
�

=
58 × 0.1

1.25
= 4.64 ������

13. A parabolic dish provides a gain of 75 dB at a frequency 15 GHz. Calculate
the capture area of the antenna, its 3 dB and null beam widths

Ans:
Given

���� � = 75 ��
75 = 10 log �

75
10

= log �

� = 107.5 = 31622776.6
��������� � = 15 ���

� =
�
�

=
3 × 108

15 × 109 = 0.02 �

Assume driven element is dipole (ηap = 0.65)

�� = � =
4���

�2

��� �� = ����� = 0.65
��2

4

� =
4�
�2 × 0.65

��2

4
= 6.4

�
�

2

31622776.6 = 6.4
�
�

2

= 6.4
�2

�2

� =
31622776.6 × 0.022

6.4
= 44.45 �

���� =
58�
�

=
58 × 0.02

44.45
= 0.02 ������

���� =
140 �

�
=

140 × 0.02
44.45

= 0.062 ������
14. A 64 meter diameter paraboloid reflector is operated at 1430 MHz and is fed
by non directional antenna. Estimate beam width between half power
points(HPBW) and between nulls(BWFN) and power gain w.r.t half wave dipole.

Ans:
Given

Diameter (D) = 64 m
��������� � = 1430 ���

� =
�
�

=
3 × 108

1430 × 106 = 0.21 �

���� =
58�
�

=
58 × 0.21

64
= 0.19 ������

���� =
140 �

�
=

140 × 0.21
64

= 0.46 ������
For half wave dipole (ηap = 0.65)
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�� = � =
4���

�2

��� �� = ����� = 0.65
��2

4

� =
4�
�2 × 0.65

��2

4 = 6.4
�
�

2

�� = 6.4
64

0.21

2

= 594430.8
�� = 10 log 594430.8 = 57.7 ��

15. A paraboloid reflector antenna with diameter 20 m is designed to operate at a
frequency of 6 GHz and illumination efficiency of 0.54. Calculate antenna gain in
decibles.

Ans:
Given

Diameter (D) = 20 m
��������� � = 6 ���

� =
�
�

=
3 × 108

6 × 109 = 0.05 �

Illumination efficiency (ηap) = 0.54

�� = � =
4���

�2

��� �� = ����� = 0.54
��2

4

� =
4�
�2 × 0.54

��2

4
= 5.33

�
�

2

�� = 5.33
20

0.05

2

= 852800
�� = 10 log 852800 = 59.3 ��

16. Calculate beam width between first nulls of a 2.5 m paraboloid reflector used
at 6 GHz. What will be its gain in decibels?

Ans:
Given

Diameter (D) = 2.5 m
��������� � = 6 ���

� =
�
�

=
3 × 108

6 × 109 = 0.05 �

Assume driven element is dipole (ηap = 0.65)

�� = � =
4���

�2

��� �� = ����� = 0.65
��2

4

� =
4�
�2 × 0.65

��2

4
= 6.4

�
�

2

�� = 6.4
2.5
0.05

2

= 16000
�� = 10 log 16000 = 42 ��
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17. Calculate the angular aperture for paraboloid reflector antenna for which
the aperture number is (i) 0.25 (ii) 0.5 (iii) 0.6 Given that diameter of the
reflector mouth is 10 m, calculate the position of the focal point with reference to
the reflector mouth in each case.

Ans:
(i)

�
�

= 0.25
�
�

=
1
4

cot
�
2

0.25 =
1
4

cot
�
2

� = 900

������� �������� = 2� = 2 × 900 = 1800

����� � = 10 �
�
�

= 0.25
� = 0.25 × � = 0.25 × 10 = 2.5 �

(ii)

�
�

= 0.5
�
�

=
1
4

cot
�
2

0.5 =
1
4

cot
�
2

� = 26.540

������� �������� = 2� = 2 × 26.540 = 53.080

����� � = 10 �
�
�

= 0.5
� = 0.5 × � = 0.5 × 10 = 5 �

(iii)
�
�

= 0.6
�
�

=
1
4

cot
�
2

0.6 =
1
4

cot
�
2

� = 45.220

������� �������� = 2� = 2 × 45.220 = 90.440

����� � = 10 �
�
�

= 0.6
� = 0.6 × � = 0.6 × 10 = 6 �

18. Estimate the diameter and the effective aperture of a paraboloid reflector
antenna required to produce a nulls width of 100 at 3 GHz.
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Ans:
Given

���� = 100

��������� � = 3 ���

� =
�
�

=
3 × 108

3 × 109 = 0.1 �

���� =
140 �

�
������

10 =
140 × 0.1

�
� =

140 × 0.1
10

= 1.4 �
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UNIT-3 (ANTENNA ARRAYS AND PROPAGATION, WAVEGUIDES)
Syllabus:Antenna Arrays and propagation: Arrays of 2 Isotropic sources- Different
cases, Principle of Pattern Multiplication, Uniform Linear Arrays – Broadside Arrays,
End fire Arrays, EFA with Increased Directivity, Derivation of their characteristics
and comparison, Bionomial Arrays, Different modes of wave propagation, Ground
wave propagation Space wave propagation - Sky wave propagation (Qualitative
treatment).
Waveguides: Introduction, Rectangular waveguides, Field expressions for TE and TM
modes, Wave propagation in the guide, Phase and group velocities, Power
transmission and attenuation, Waveguide current and mode excitation, Circular
waveguide – TE and TM modes, Wave propagation, waveguide resonators.

ARRAYS OF 2 ISOTROPIC SOURCES- DIFFERENT CASES
Introduction:
Array is defined as method of combining the radiations from the group or array of
elements (antenna) with involving wave interference. The total field at a distance
point ‘P’ due to the antenna array is the vector sum of the fields produced by the
individual antennas of the array system. Array is said to be linear, when all the
elements are equally spaced along straight line. Further a array is said to be uniform
linear array, if all the elements in the array are fed with currents of equal amplitudes
and uniform progressive phase shift along the line. There are different types of
antennas arrays such as Broad side array, End fire array, Collinear array and parasitic
array. The structure of 7 element broad side and end fire array is shown in figure
below.

d d d d d d

1 2 3 4 5 6 7

       Direction of 
Maximum radiation

       Direction of 
Maximum radiation

Direction of
Minimum
radiation

Direction of
Minimum
radiation

Axis of array

Fig: Broad side array arrangement
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d d d d d d

1 2 3 4 5 6 7

       Direction of 
Minimum radiation

       Direction of 
Minimum radiation

Direction of
Maximum
radiation

Direction of
Maximum
radiation

Axis of array

Fig: End fire array arrangement

00

900

1800

2700

00

900

2700

1800

Fig(a): Radiation pattern of 
             Broad side array

Fig(b): Radiation pattern of 
             End fire array

Two-element Broad side array (Equal amplitudes and same phase):
When all the elements of array supplied with currents of equal amplitude and same
phase, then it fires the maximum radiation in perpendicular direction of the array axis
and minimum radiation along the direction of the array axis. The structure of two
element broad side array is shown in the figure below. The total field strength of two
element broadside array is the vector sum of the fields of two individual elements.
The path difference between the weaves due to the two antennas is given by

�. � = ����� �

�. � =
�
� cos �

Phase angle due to path difference is given by
� = ������ − 1

Total electric field at the interesting point (P) is given by
� = �1�−��/2 + �2�+��/2

Where E1 and E2 are the magnitudes of electric filed strengths due to element 1 and 2
respectively.

Let E1 = E2 = E0

� = �0(�−��/2 + �+��/2)
� = �0(�+��/2 + �−��/2)

Multiply R.H.S with 2/2
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� =
2
2

�0(�+��/2 + �−��/2)

� = 2�0
�+��/2 + �−��/2

2 = 2�0 cos �/2 − 2

d

1 2

       Direction of 
Maximum radiation

       Direction of 
Maximum radiation

Direction of
Minimum
radiation

Direction of
Minimum
radiation

Axis of array

To receiving point ‘P’

1 2

d

θθ

d/2

d c
os

θ

Fig: Two-element broad side array

Substitute equation 1 in equation 2,
� = 2�0��� �/2 = 2�0��� �� ����/2 − 3

The above equation represents the total electric field strength at the receiving point
due to two element broad side array. In above equation the term ‘2E0’ represent the
magnitude and cos(βd cosθ) represents the phase factor or pattern factor or array
factor.
Direction of maximum radiation:
The direction of maximum radiation of major lobe can be obtained as follows:
We have

� = 2�0��� �� ����/2
To have the maximum value for E, the pattern factor must be maximum. i.e.

cos
�� ����

2 = 1

cos
2�
�

� ����
2 = 1

cos
�� ����

�
= 1

To satisfy the above equation,
�� ����

�
=± ��

Where n = 0,1,2,3,…

cos � =±
���
��

=±
��
�

� = ���� = ���−1 ±
��
�

− 4
Direction of minimum radiation:
The direction of minimum radiation of major lobe can be obtained as follows:
We have
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� = 2�0��� �� ����/2
To have the minimum value for E, the pattern factor must be minimum. i.e.

cos
�� ����

2
= 0

cos
2�
�

� ����
2 = 0

cos
�� ����

�
= 0

To satisfy the above equation,
�� ����

� =± 2� + 1 �/2
Where n = 0,1,2,3,…

cos � =±
2� + 1 ��

2��
=±

2� + 1 �
2�

� = ���� = ���−1 ±
2� + 1 �

2�
− 5

Direction of half power points:
The direction of half power points of major lobe can be obtained as follows:
We have

� = 2�0��� �� ����/2
At half power points, E must be 1/√2 times of maximum value

cos
�� ����

2
=

1
2

cos
2�
�

� ����
2

=
1
2

cos
�� ����

�
=

1
2

To satisfy the above equation,
�� ����

�
=± 2� + 1 �/4

Where n = 0,1,2,3,…

cos � =±
2� + 1 ��

4�� =±
2� + 1 �

4�

� = ���� = ���−1 ±
2� + 1 �

4� − 6

The radiation pattern of 2-element broad side array with λ/2 spacing by using the
above relations can be obtained as follows:

���� = ���−1 ±
��
�

= ���−1 ±
��
�
2

= ���−1 ±2�

When n = 0, ���� = ���−1 ±0 = 900 & 2700

When n = 1, ���� = ���−1 ±2 = �������� ��� ���������

Similarly, ���� = ���−1 ± 2�+1 �
2�

= ���−1 ± 2�+1 �

2�
2

���� = ���−1 ± 2� + 1
When n = 0, ���� = ���−1 ±1 = 00 & 1800

When n = 1, ���� = ���−1 ±3 = ��� ���������
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Similarly ���� = ���−1 ± 2�+1 �
4�

= ���−1 ± 2�+1 �

4�
2

���� = ���−1 ±
2� + 1

2
When n = 0, ���� = ���−1 ± 1

2
= ±600 & ±1200 =+ 600, − 600, +

1200 & − 1200

When n = 1, ���� = ���−1 ± 3
2

= ��� ���������
The resultant radiation pattern of 2 element broad side array with spacing λ/2 is
shown in figure below.

00

900

1800

2700

Fig(a): Radiation pattern of 
             Broad side array

+600
+1200

-600-1200

Two-element end fire array (Equal amplitudes and opposite phase):
When all the elements of array supplied with currents of equal amplitude and opposite
phase, then it fires the maximum radiation along the direction of the array axis and
minimum radiation in perpendicular direction of the array axis. The structure of two
element end-fire array is shown in the figure below. The total field strength of two
element broadside array is the vector sum of the fields of two individual elements.
The path difference between the weaves due to the two antennas is given by

�. � = ����� �

�. � =
�
�

cos �
Phase angle due to path difference is given by

� = ������ − 1
Total electric field at the interesting point (P) is given by

� = −�1�−��/2 + �2�+��/2

Where E1 and E2 are the magnitudes of electric filed strengths due to element 1 and 2
respectively. In above equation negative sign to E1 represents the current of element 1
is opposite to the current of element 2.

Let E1 = E2 = E0

� = �0(−�−��/2 + �+��/2)

� = �0(�+��
2 − �−��/2)

Multiply R.H.S with 2j/2j

� =
2�
2�

�0(�+��/2 + �−��/2)

� = 2��0
�+��/2 + �−��/2

2�
= 2��0 sin �/2 − 2

Substitute equation 1 in equation 2,
� = 2��0��� �/2 = 2��0��� �� ����/2 − 3

SJC
ET



d

1 2

       Direction of 
Minimum radiation

       Direction of 
Minimum radiation

Direction of
Maximum
radiation

Direction of
Maximum
radiation

Axis of array

To receiving point ‘P’

1 2

d

θθ

d/2

d c
os

θ

Fig: Two-element end fire array

The above equation represents the total electric field strength at the receiving point
due to two element end fire array. In above equation the term ‘2E0’ represent the
magnitude and sin(βd cosθ) represents the phase factor or pattern factor or array
factor.
Direction of maximum radiation:
The direction of maximum radiation of major lobe can be obtained as follows:
We have

� = 2��0��� �� ����/2
To have the maximum value for E, the pattern factor must be maximum. i.e.

sin
�� ����

2
= 1

sin
2�
�

� ����
2

= 1

sin
�� ����

�
= 1

To satisfy the above equation,
�� ����

�
=± 2� + 1 �/2

Where n = 0,1,2,3,…

cos � =±
2� + 1 ��

2��
=±

2� + 1 �
2�

� = ���� = ���−1 ±
2� + 1 �

2� − 4

Direction of minimum radiation:
The direction of minimum radiation of major lobe can be obtained as follows:
We have

� = 2��0��� �� ����/2
To have the minimum value for E, the pattern factor must be minimum. i.e.

sin
�� ����

2 = 0

sin
2�
�

� ����
2

= 0

sin
�� ����

� = 0
To satisfy the above equation,
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�� ����
�

=± ��
Where n = 0,1,2,3,…

cos � =±
���
��

=±
��
�

� = ���� = ���−1 ±
��
�

− 5
Direction of half power points:
The direction of half power points of major lobe can be obtained as follows:
We have

� = 2��0��� �� ����/2
At half power points, E must be 1/√2 times of maximum value

sin
�� ����

2 =
1
2

sin
2�
�

� ����
2 =

1
2

sin
�� ����

� =
1
2

To satisfy the above equation,
�� ����

� =± 2� + 1 �/4
Where n = 0,1,2,3,…

cos � =±
2� + 1 ��

4��
=±

2� + 1 �
4�

� = ���� = ���−1 ±
2� + 1 �

4� − 6

The radiation pattern of 2-element end fire array with λ/2 spacing by using the above
relations can be obtained as follows:

���� = ���−1 ±
2� + 1 �

2� = ���−1 ±
2� + 1 �

2 �
2

= ���−1 ± 2� + 1

When n = 0, ���� = ���−1 ±1 = 00 & 1800

When n = 1, ���� = ���−1 ±3 = ��� ���������

Similarly, ���� = ���−1 ± ��
�

= ���−1 ± ��
�
2

= ���−1 ±2�

When n = 0, ���� = ���−1 ±0 = 900 & 2700

When n = 1, ���� = ���−1 ±2 = �������� ��� ���������

Similarly, ���� = ���−1 ± 2�+1 �
4�

= ���−1 ± 2�+1 �

4�
2

=

���−1 ± 2�+1
2

When n = 0, ���� = ���−1 ± 1
2

= ±600 & ±1200 =+ 600, − 600, +
1200 & − 1200

When n = 1, ���� = ���−1 ± 3
2

= ��� ���������
The resultant radiation pattern of 2 element end fire array with spacing λ/2 is shown
in figure below.
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Fig(b): Radiation pattern of 
             End fire array

00

+600
900

+1200

1800

-600-1200
2700

Two-element array with unequal amplitudes and any phase:
To find out the total electric field strength at any receiving point due to two-element
array with unequal amplitudes and any phase, the vector addition is used. The vector
diagram to add the field strengths due to two elements is shown in the figure below.

E1

E 2 =
 kE

1E

φ ψ

kE1 cosψ

kE1 sinψ

The total phase difference between waves due to element 1 and 2 is given by
Ψ = Phase angle due to path difference + phase angle difference between the input
currents.

� = �� cos � + �
Total electric field strength at interesting point with reference to element 1 is given by

� = �1�� 0 + �2��� = �1 + �2���

� = �1 1 +
�2

�1
��� = �1 1 + ����

Where � = �2
�1

� = �1 1 + � cos � + � sin �
� = �1 1 + � cos � + �� sin � = �1 1 + � cos � + �� sin �

� = �1 1 + � cos � 2 + �� sin � 2

The phase angle � is given by

� = tan−1 ��1 sin �
�1 + ��1 cos �

= tan−1 � sin �
1 + � cos �

UNIFORM LINEAR ARRAYS
Consider the uniform linear array contains N-no. of elements shown in the figure
below.

1 2 3 4 N

θ

d d d

Fig: N-element linear array
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Let us derive the general equation for the total electric field strength due to N-element
linear array.
The total electric field strength (w.r.t element 1) at a point P is given by

�� = �1��0 + �2��� + �3��2� + �4��3� + …………. + ����(�−1)� − 1
Assume �1 = �2 = �3 = �4 = ……… �� = �0
Then equation 1 becomes

�� = �0 1 + ��� + ��2� + ��3� + ……. + ��(�−1)� − 2
Multiply both side with ejΨ

����� = ����0 1 + ��� + ��2� + ��3� + ……. + ��(�−1)�

����� = �0 ��� + ��2� + ��3� + ��4� ……. + ���� − 3
Subtract equation 3 from 2,

�� 1 − ��� = �0 1 − ����

�� =
�0 1 − ����

1 − ���

�� =
�0 ����/2. �−���/2 − ����/2. ����/2

���/2. �−��/2 − ���/2. ���/2 =
−�0����/2 − �−���/2 + ����/2

−���/2 −�−��/2 + ���/2

�� =
�0����/2 ����/2 − �−���/2

���/2 ���/2 − �−��/2 − 4

We know that,

sin ��/2 =
����/2 − �−���/2

2�
����/2 − �−���/2 = 2� sin ��/2 − 5

Similarly sin �/2 = ���/2−�−��/2

2�
���/2 − �−��/2 = 2� sin �/2 − 6

Substitute equations 5 and 6 in equation 4

�� =
�0����/2 2� sin ��/2

���/2 2� sin �/2
= �0

sin ��/2
sin �/2

��∅

Wher ∅ = � − 1 �/2
In above equation the factor sin ��/2

sin �/2
is called array factor or pattern factor.

N-Element Broadside Arrays:
When all the elements of array supplied with currents of equal amplitude and same
phase, then it fires the maximum radiation in perpendicular direction of the array axis
and minimum radiation along the direction of the array axis.
Direction of maximum radiation of minor lobes or pattern maxima:
The total electric field strength due to N-element broad side array is given by

�� = �0
sin ��/2
sin �/2 ��∅

To have the maximum value for E, the pattern factor must be maximum. That is
sin ��/2
sin �/2

must be maximum. To have maximum value for sin ��/2
sin �/2

its numerator must be
maximum.

sin
��
2

= 1
To satisfy the above relation
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��
2

=± 2� + 1 �/2
Where n = 1,2,3,…

n = 0 for major lobe
�� =± 2� + 1 �

� =±
2� + 1 �

�
But � = �� cos � + �

�� cos � + � =±
2� + 1 �

�
But α = 0 for broad side array

�� cos � =±
2� + 1 �

�
cos � =±

2� + 1 �
���

=±
2� + 1 �
2�
� ��

cos � =±
2� + 1 �

2��

���� ����� = cos−1 ±
2� + 1 �

2�� − 7

Direction of minimum radiation of minor lobes or pattern minima:
The total electric field strength due to N-element broad side array is given by

�� = �0
sin ��/2
sin �/2

��∅

To have the minimum value for E, the pattern factor must be minimum. That is
sin ��/2
sin �/2

must be minimum. To have minimum value for sin ��/2
sin �/2

its numerator must be
minimum.

sin
��
2

= 0
To satisfy the above relation

��
2

=± ��
Where n = 1,2,3,… n = 0 for major lobe

�� =± 2��

� =±
2��
�

But � = �� cos � + �

�� cos � + � =±
2� + 1 �

�
But α = 0 for broad side array

�� cos � =±
2��
�

cos � =±
2��
���

=±
2��

2�
� ��

cos � =±
��
��
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���� ����� = cos−1 ±
��
��

Beam width of major lobe:
Beam width or BWFN of a major lobe is defined as the angle between the first nulls
or twice the
angle between first null and major lobe maximum radiation direction as shown in
figure below.

γ

(θmin)minor

Direction of max radiation

First null

Let the angle between first null and major lobe maximum radiation direction is γ
From figure, ���� ����� = 90 − �

90 − � = cos−1 ��
��

cos 90 − � =
��
��

sin � ≅ � =
��
��

Replace n with 1, because first null occurs when n = 1

� =
�

��
���� ����ℎ = ���� = 2� = 2�

��
�� ������s

���� ����ℎ = ���� =
2�
��

× 57.30 =
114.6 �

��
�� �������

Half Power Beam Width of N-element Broad side array is given by

HPBW =
����

�
=

57.3 λ
Nd

degree
End-fire Arrays:
When all the elements of array supplied with currents of equal amplitude and opposite
phase, then it fires the maximum radiation in the direction of the array axis and
minimum radiation in perpendicular direction of the array axis.
Let us get small equation for α.
To have a maximum value of electric field strength at any direction, the total phase
angle ψ must be zero. In case of end fire array, the maximum radiation will be at 00

and 1800 directions.
Therefore

� = �� cos � + � = 0
Let maximum radiation direction is 00. i.e θ = 00

�� cos (0) + � = 0
�� + � = 0
� =− �� − 1

Direction of maximum radiation of minor lobes or pattern maxima:
The total electric field strength due to N-element broad side array is given by
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�� = �0
sin ��/2
sin �/2

��∅

To have the maximum value for E, the pattern factor must be maximum. That is
sin ��/2
sin �/2

must be maximum. To have maximum value for sin ��/2
sin �/2

its numerator must be
maximum.

sin
��
2

= 1

To satisfy the above relation ��
2

=± 2� + 1 �/2
Where n = 1,2,3,… n = 0 for major lobe

�� =± 2� + 1 �

� =±
2� + 1 �

�
But � = �� cos � + �

�� cos � + � =±
2� + 1 �

�
− 2

Substitute equation 1 in equation2

�� cos � − �� =±
2� + 1 �

�
��(cos � − 1) =±

2� + 1 �
� =

cos � − 1 = ±
2� + 1 �

���
=±

2� + 1 �
2�
� ��

cos � − 1 = ±
2� + 1 �

2��
cos � =±

2� + 1 �
2��

+ 1

���� ����� = cos−1 ±
2� + 1 �

2��
+ 1 − 3

Direction of minimum radiation of minor lobes or pattern minima:
The total electric field strength due to N-element broad side array is given by

�� = �0
sin ��/2
sin �/2

��∅

To have the minimum value for E, the pattern factor must be minimum. That is
sin ��/2
sin �/2

must be minimum. To have minimum value for sin ��/2
sin �/2

its numerator must be
minimum.

sin
��
2

= 0

To satisfy the above relation ��
2

=± ��
Where n = 1,2,3,… n = 0 for major lobe

�� =± 2��

� =±
2��
�
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But � = �� cos � + �

�� cos � + � =±
2� + 1 �

�
− 4

Substitute equation 1 in equation4

�� cos � − �� =±
2��
�

�� cos � − 1 =±
2��
�

cos � − 1 =±
2��
���

=±
2��

2�
� ��

cos � − 1 =±
��
��

But cos � = 1 − 2���2�/2

1 − 2���2�/2 −1 =±
��
��

���� ����� = 2 sin−1 ±
��

2��
− 5

Beam width of major lobe:
The beam width can be obtained from the following figure

(θmin)minor Direction of
 max radiation

First null

Beam width (BWFN) = 2 X ���� ����� − 6

���� ����� = 2 sin−1 ��
2��

= sin−1 ��
2��

sin
���� �����

2
=

��
2��

When ���� ����� is small, then

sin
���� �����

2 ≅
���� �����

2 =
��

2��

���� ����� = 2
��

2��
=

2��
��

− 7

Substitute equation 7 in equation 6

���� = 2
2��
��

Replace n with 1, because first null occurs when n = 1
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Beam Width between First Nulls (BWFN) of N-element end-fire array is given by

BWFN = 2
2λ
Nd

radian = 2
2λ
Nd

× 57.3 degree

Half Power Beam Width of N-element end-fire array is given by

HPBW =
2λ
Nd

radian =
2λ
Nd

× 57.3 degree

COMPARISON OF DIFFERENT ARRAY:
Comparison of various arrays is given in the table below:

EFA with Increased Directivity:
The condition for producing the maximum radiation in the direction of array axis and
minimum radiation in perpendicular direction is, all the elements should be supplied
with currents of equal amplitudes and opposite phase. That is the phase angel
(progressive phase shift) � =± �� ( � =− �� ��� � = 00 ��� � =+ �� ��� � =
1800) . This particular condition may give the maximum bandwidth but not the
directivity.

In order to increase the directivity of the endfire array without destroying any
other characteristics, Hansen and Woodyard proposed some other conditions. These
conditions are given by

� =− �� +
�
�

��� ������� �� � = 00

And

S.No Parameter Broad side array Endfire array EFA with increased
directivity

1 HPBW
57.3 λ

Nd
degree 2λ

Nd
× 57.3 degree

2λ
Nd

× 57.3 degree

2 BWFN
114.6 λ

Nd
degree 2

2λ
Nd

× 57.3 degree 2
2λ
Nd

× 57.3 degree

3

Direction of
minor lobes
maxima cos−1 ±

2� + 1 �
2��

cos−1 ±
2� + 1 �

2��
+ 1

cos−1 ±
2� + 1 �

2��
+ 1

4
Direction of
minor lobes
minima

cos−1 ±
��
��

2 cos−1 ±
��

2��
2 cos−1 ±

��
2��

5 Directivity D =
2Nd

λ
D =

4Nd
λ

D = 1.789
4Nd

λ
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� = �� +
�
�

��� ������� �� � = 1800

Where N is the no.of elements in the aray.
In order to realize the increased directivity due to the Hansen-Woodyard conditions, it
is necessary that besides the conditions given above, the value of the phase difference
(Ψ) assumes the values as follows:

(i) For maximum radiation along � = 00

� = �� cos � + � �=00 =
�
�

� = �� cos � + � �=1800 = �

(ii) For maximum radiation along � = 1800

� = �� cos � + � �=00 = �
� = �� cos � + � �=1800 =

�
�

BINOMIAL ARRAYS:
The major disadvantage of linear arrays such as broad side or endfire array is, the
number of minor lobes will be increases when the distance between the elements (d)
or number of elements (N) increases. This drawback can be avoided by using the
binomial array .i.e. number of minor lobes can be reduced by using the binomial array.
In binomial array, non uniform amplitudes will be applied to the individual elements.
In this array, the amplitudes of the radiating sources are arranged according to the
coefficients of successive terms of the following binomial series and hence the name.

� + � �−1 = ��−1 +
� − 1

1! ��−2� +
� − 1 � − 2

2! ��−3�2

+
� − 1 � − 2 � − 3

3!
��−4�3 + …. .

Where n is the number of elements in the array.
The following two conditions were satisfied in binomial array to reduce the number of
minor lobes.

(i) Spacing between the two consecutive radiating sources does not exceed λ/2.
(ii) The current amplitudes in radiating sources are proportional to the coefficients

of the successive terms of the binomial series.
The coefficients of successive terms can be obtained either from the binomial series
or from the Pascal’s triangle shown in the figure below.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1

Fig: Pascal’s Triangle
Advantages of Binomial array:

(i) Less number of minor lobes as compared with linear arrays
(ii) Beam width increases
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Disadvantages of Binomial array:
(i) Beam width increases and hence the directivity will be decreases
(ii) For design of large array, larger amplitude ratio of sources is required.

PRINCIPLE OF PATTERN MULTIPLICATION
The principle of pattern multiplication or multiplication of patterns is stated as follows:
“The total field pattern of array of non-isotropic but similar sources is the
multiplication of the individual source pattern and the pattern of array of isotropic
point sources each located at the phase center of individual source, and having the
relative amplitude and phase, where as the total phase pattern is the addition of the
phase pattern of the individual sources and that of the array of isotropic point sources”.
This statement can be expressed as

� = �� �, � × �� �, � × ��� �, � × ��� �, �
Where �� �, � is the field or magnitude pattern of individual source

�� �, � is field or magnitude pattern of array of isotropic point sources
��� �, � is the phase pattern of individual source

��� �, � is the phase pattern of array of isotropic point sources.
The pattern multiplication has great advantage that, it makes possible to sketch
rapidly, almost by inspection, the pattern of complicated arrays.

Let us explain the concept of pattern multiplication by considering the 4
element broadside array with spacing λ/2 as shown in figure below.

1 2 3 4

λ/2 λ/2 λ/2

λ
Unit-1 Unit-2

The pattern of elements 1 and 2 operating as a unit, that is two antennas spaced λ/2
and fed in phase (broad side array). Also antennas 2 and 3 will be considered as
another unit with the same pattern of figure of eight shape. Now the 4-element array
has been reduced to 2-element (units) array with spacing λ as shown figure. The
radiation pattern of two element broad side array with spacing λ can be obtained by
using the two element array analysis and is shown in the figure below. This pattern is
called group pattern.
From the two element array analysis, we know that

���� = cos−1 ±
��
�

= cos−1 ±
��
�

= cos−1 ±�

When n = 0, ���� = cos−1 0 = 900 & 2700

When n = 1, ���� = cos−1 1 = 00 & 1800

When n = 2, ���� = cos−1 2 = ��� ���������
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00

900

1800

2700

The resultant pattern for the original 4-element array is obtained by multiplying the
unit pattern with group pattern. The above procedure can be represented in the
following figure below.

00

900

1800

2700

00

900

1800

2700

X
X

= 00

900

1800

2700

Unit pattern X Group pattern = Resultant pattern

Similarly the radiation pattern of 8 element broad side array with spacing λ/2 is shown
in the figure below.

1 2 3 4

λ/2 λ/2 λ/2

2 λ
Unit-1 Unit-2

λ/2λ/2 λ/2 λ/2

5 6 7 8

00

900

1800

2700

X =

Unit pattern X Group pattern = Resultant pattern

00

600
900

1200

1800

2700
-600-1200

00

900

1800

2700

DIFFERENT MODES OF WAVE PROPAGATION
There are three modes of wave propagation such as

(i) Ground wave or Surface wave propagation
(ii) Space wave or Tropospheric wave propagation
(iii)Sky wave or Ionospheric wave propagation

These three modes are represented in the figure shown below

SJC
ET



Ionosphere

Troposphere

Stratosphere

Ground wave propagation Space wave propagation

    Sky wave 
propagation

Earth

Ground wave or Surface wave propagation: When the waves propagate along the
surface of the earth, then it is known as ground wave or surface wave propagation.
The ground wave propagation will be used for the frequencies less than 2 MHz. The
ground wave propagation covers more distance as compared with the space wave
propagation. The ground wave field strength dies out after traveling long distance due
to wavefront tilting and earth attenuation.
Space wave or Tropospheric wave propagation: When the waves propagate
through the tropospheric layer of atmosphere then it is known as space wave or
tropospheric wave propagation. This propagation will be used for the frequency
greater than the 30 MHz. This propagation is also called as LOS (Line Of Sight)
propagation. It covers less distance as compared with ground wave and sky wave
propagation. Space waves do not follow the earth’s curvature and hence they cannot
travel more distance.
Sky wave or Ionospheric wave propagation: When the waves propagate through
the Ionospheric layer of atmosphere then it is known as sky wave or ionospheric wave
propagation. This propagation will be used for the frequency between 2 MHz to 30
MHz. It covers very long distance as compared with ground wave and sky wave
propagation.

GROUNDWAVE PROPAGATION
Introduction:
When the waves propagate along the surface of the earth, then it is known as ground
wave or surface wave propagation. The ground wave propagation will be used for the
frequencies less than 2 MHz. The ground wave propagation covers more distance as
compared with the space wave propagation. The ground wave field strength dies out
after traveling long distance due to wavefront tilting and earth attenuation.
Plane earth reflections:
When a wave is reflected from the flat earth or plane earth, then it is known as plane
earth reflections. When the distance between the transmitting and receiving antenna is
small, then the earth can be imagined as flat or plane surface. The plane earth
reflections are shown in the figure below.
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Earth

Transmitting
antenna Receiving

antenna

DW

RW

From the above figure it can be observed that, the signal strength at the receiving
point is the combination of direct wave and reflected wave. The magnitude of the
reflected signal depends upon the type of earth surface i.e smooth surface or rough
surface. The roughness of the earth
can be calculated based on the following empherical formula.

� = 4������/�
Where

σ is the standard deviation of the surface irregularities
θ is the angle of incidence with respect to the normal to the earth surface
λ is the wavelength.

When the value of R is less than 0.1, then the earth surface can be considered as
smooth and when it is greater than 10, then it is considered as rough surface. When
the angle θ is zero, then the surface is smooth. When the signal is reflected from the
smooth surface, then the amplitude of the reflected signal will be equal to the incident
signal where as if it reflected from the rough surface, the amplitude of the reflected
signal will be less than the incident signal because of scattering of signal by the rough
surface.
Wave tilt:
The following figure represents the basic principle involved in ground wave
propagation.

Earth

Transmitting
antenna

A

WI

AI

W
WII

WIII

AII

AIII

A, AI  , AII ,AIII     are tilt angles

W, WI  , WII ,WIII     are wavefronts

In ground wave propagation, the waves glides over the earth surface i.e the waves
travels along the surface of the earth. In this propagation, the lower tip of the electric
filed strength vector will be in touch with the earth surface. Initially if we assume the
orientation of electric vector is vertical, later it becomes horizontal after traveling long
distance due to the tilting of wavefront. Due to the surface irregularities of the earth,
the wavefront of the waves will tilt as shown in the figure. Therefore, the ground
wave field strength will be dies out after traveling certain distance due to shorting out
the horizontal component by the earth(earth is assumed as good conductor).
Curved earth reflections:
When a wave is reflected from the curved earth or plane earth, then it is known as
curved earth reflections. When the distance between the transmitting and receiving
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antenna is large, then the earth can be imagined as curved earth. The curved earth
reflections are shown in the figure below.
Due to the curvature of the earth, the space wave signal will be affected more as
compared with the surface wave signal. Form the above figure it can be observed that,
the physical heights of the antennas will be more than the effective heights. The major
difference between the plane earth reflections and curved earth reflections is, the path
difference between the direct wave and reflected wave will be more in plane earth
reflections as compared with curved earth reflections.

Earth

Transmitting
antenna Receiving

antenna

DW

RW

SPACE WAVE PROPAGATION
Introduction:
When the waves propagate through the tropospheric layer of atmosphere then it is
known as space wave or tropospheric wave propagation. This propagation will be
used for the frequency greater than the 30 MHz. This propagation is also called as
LOS (Line Of Sight) propagation. It covers less distance as compared with ground
wave and sky wave propagation. Space waves do not follow the earth’s curvature and
hence they cannot travel more distance.
LOS range or coverage distance:
The coverage range or LOS distance is defined as the maximum distance at which the
space wave signal would be received with receiving antenna. The LOS range can be
calculated from the figure shown below.

Earth

Transmitting
antenna

Receiving
antenna

ht hr

o

A B C

r

r

r

d1 d2

From triangle OAB,
� + ℎ�

2 = �2 + �1
2

�1
2 = � + ℎ�

2 − �2

�1 = � + ℎ�
2 − �2

�1 = �2 + 2�ℎ� + ℎ�
2 − �2

�1 = 2�ℎ� − 1
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ℎ�
2 is neglected as compared with 2Rht

Similarly from triangle OBC,
� + ℎ�

2 = �2 + �2
2

�2
2 = � + ℎ�

2 − �2

�2 = � + ℎ�
2 − �2

�2 = �2 + 2�ℎ� + ℎ�
2 − �2

�1 = 2�ℎ� − 2
ℎ�

2 is neglected as compared with 2Rhr

��� ����� � = �1 + �2 − 3
Substitute equations 1 and 2 in equation 3
Then,

� = 2�ℎ� + 2�ℎ�

� = 2� ℎ� + ℎ� �� ������
In above equation the letter ‘r’ represents the earth radius which will be equal to 6370
km.
The above equation can be expressed in kilometers as

� = 2 × 6370 �� ℎ� + ℎ�

� = 2 × 6370 × 103 ℎ� + ℎ�

� = 2 × 6.37 × 103 × 103 ℎ� + ℎ�

� = 2 × 6.37 ℎ� + ℎ� × 103

� = 3.57 ℎ� + ℎ� ��
Field strength of space wave propagation:
The equation for the space wave field strength is derived as follows:

Earth

Transmitting
antenna

Receiving
antenna

DW

RW

d1

ht

hr

hr

d2

o

A

B
C

D
E

d

d

The path difference between the direct wave and reflected wave is given by
�. � = �2 − �1 − 1

Form the Δ OAB shown in above figure,
�1

2 = �2 + ℎ� − ℎ�
2

�1
2 = �2 1 +

ℎ� − ℎ�

�

2

�1 = � 1 +
ℎ� − ℎ�

�

2

= � 1 +
ℎ� − ℎ�

�

2 1/2

Expand by using binomial expansion
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�2 = � 1 +
1
2

ℎ� − ℎ�

�

2

�1 = � +
ℎ� − ℎ�

2

2�
− 2

Similarly from ΔOBC,
�2

2 = �2 + ℎ� + ℎ�
2

�2
2 = �2 1 +

ℎ� + ℎ�

�

2

�2 = � 1 +
ℎ� + ℎ�

�

2

= � 1 +
ℎ� + ℎ�

�

2 1/2

Expand by using binomial expansion

�2 = � 1 +
1
2

ℎ� + ℎ�

�

2

�2 = � +
ℎ� + ℎ�

2

2�
− 3

Substitute equations 2 and 3 in equation 1

�. � = � +
ℎ� + ℎ�

2

2� − � +
ℎ� − ℎ�

2

2�

�. � = � +
ℎ� + ℎ�

2

2�
− � −

ℎ� − ℎ�
2

2�

�. � =
ℎ� + ℎ�

2 − ℎ� − ℎ�
2

2�
=

4ℎ�ℎ�

2�
Phase angel due to path difference is given by

� =
2�
�

�. � =
2�
�

4ℎ�ℎ�

2�
=

4�ℎ�ℎ�

��
− 4

Total phase difference between the direct wave and reflected wave is given by
� = � + �

Where β is called the phase of the reflected signal due to reflection by the earth which
is equal to 1800.

� = � + 1800 − 5
The total electric field strength at the receiving point is given by

�� = �0��0 + ��0�−�� = �0 1 + ��−��

�� = �0 1 + � ���� − �����
�� = �0 1 + ����� − ������

�� = �0 (1 + �����)2 + �2���2�
�� = �0 1 + �2���2� + 2����� + �2���2� = �0 1 + �2 + 2�����

But

���� = 2���2 �
2

− 1

�� = �0 1 + �2 + 2� 2���2 �
2

− 1

But for good conductor the reflection coefficient k equal to unity.
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�� = �0 1 + 1 + 2 2���2 �
2

− 1 = �0 2 + 4���2 �
2

− 2

�� = 2�0���
�
2

− 6
Substitute equation 5 in equation 6

�� = 2�0���
� + 1800

2
= 2�0���

�
2

− 7

Substitute equation 4 in equation 7

�� = 2�0���
4�ℎ�ℎ�

2��
�� ≅ 2�0

4�ℎ�ℎ�

2��
= �0

4�ℎ�ℎ�

��
But

�0 =
7 �

�
Where P is the power transmitted.

�� =
7 �

�
4�ℎ�ℎ�

��

�� =
88 � ℎ�ℎ�

��2

Where
P is the power transmitted
ht is the height of the transmitting antenna
hr is the height of the receiving antenna
λ is the wavelength
d is the distance between the transmitting and receiving antennas.

It can be observed that, the filed strength and distance are inversely proportional that
is the field strength is decreases with increase in distance. Also it is observed that, the
space wave field strength is a function of heights of the transmitting and receiving
antenna. To increases the field strength, either the height of the transmitting antenna
or receiving antenna or both can be increased.

SKYWAVE PROPAGATION
Introduction:
When the waves propagate through the Ionospheric layer of atmosphere then it is
known as sky wave or ionospheric wave propagation. This propagation will be used
for the frequency between 2 MHz to 30 MHz. It covers very long distance as
compared with ground wave and sky wave propagation.
Structure of ionosphere:
The ionosphere is a region or layer above the earth and is composed of ionized layers.
It is the highest layer of the atmosphere. The ionization is appreciable in this layer and
hence the name ionosphere arises. The structure of ionosphere is shown in the figure
below. The ionosphere consists of three layers such as D-layer, E-Layer and F-layer.
D-layer: It exists between the heights 50 to 90 km above the earth’s surface. D-Layer
is also known as Kennelly Heaviside layer. This layer will exist during the day time
only where as in night times it disappears. The ionization in this layer is less because,
it receives lee amount of solar energy. This layer will absorb the signal in the LF and
MF ranges.
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Earth

Troposphere

Stratosphere

D-Layer

E-Layer

F1 -Layer

F2 -Layer

Ion
os

ph
er

e

16 km

50-90 km

90-140 km

140-250 km

250-400 km

16-50 km

E-layer: This layer exists at a height of 90 to 140 km above the earth’s surface with
maximum density at 110 km. This layer is also known as Appleton layer. This almost
constant with little diurnal and seasonal variations. It permits medium distance
communication in LF and HF frequency bands. In E-layer there is one more layer
called sporadic E-layer which exists occasionally. This layer results of an anomalous
phenomena and falls under the category of irregular variations. The main reason for
the existence of this layer is infiltration of charge carriers from the upper layers. This
layer may not exist at all places. Also it do not present at all seasons.
F-Layer: It exists at heights of 150 to 400 km above the earth’s surface. It is
subdivided in to two layers such as F1 layer and F2 layer. F1 layer will present at a
height of 150 to 250 km where as F2 layer will present at a height of 250 to 400 km.
This F-layer will be used for long distance communication. During the night time both
F1 and F2 layers combine and form as a single layer because of less solar energy
during the night times.
Refraction and reflection of sky waves by ionosphere:
The basic principle of ionosphereic propagation is reflection but the phenomenon that
takes place is refraction. To understand the refraction and reflection of sky waves, it is
better to derive the equation for the refractive index of the ionosphere.
Let E = Em Sinωt be the electric field strength that enter in to the ionosphere. Due to
this electric field, there is a force on the electrons present in the ionosphere. This force
is given by

�� =− �� − 1
Where e is the charge of electron and Fe is the electric force.
Also from Newton’s law the force is given by

� = �� = �
��
��

− 2
Where ‘m’ is the mass of electron, ‘v’ is the velocity of electron and ‘a’ is the
acceleration.
Equate equations 1 and 2

�
��
��

=− ��

�� =−
��
�

��
Take integration on both sides,

� =−
��
�

��� =−
�
�

�� sin ���
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� =
��������

��
� =

�
��

������� − 3
If ‘N’ be the number of electrons per cubic meter, then the instantaneous electric
current is given by

�� =− ��� − 4
Substitute equation 3 in 4

�� =− ��
�

��
������� =−

��2

��
������� − 5

The above current is called as inductive current. Beside this inductive current , there is
additional current called capacitive current or displacement current due to the
displacement of charge carriers. This current is known as capacitive current and is
given by

�� =
��
��

=
�
��

�0� =
�
��

�0�� sin ��
�� = �0�������� − 6

Total current is given by
� = �� + �� − 7

Substitute equations 6 and 5 in equation 7

� = �0�������� −
��2

��
�������

� = �������� �0 −
��2

��2 − 8

By comparing equations 6 and 8 we can say that the term �0 − ��2

��2 is called
effective dielectric constant (ε).

� = �0 −
��2

��2

� = �0 1 −
��2

��2�0

�� =
�
�0

= 1 −
��2

��2�0
The refractive index is given by

� = �� = 1 −
��2

��2�0

Substitute the values m = 9.107 X10-31 kg, e = 1.602 X 10-19 coulombs, ε0 = 8.854 X
10-12 and ω = 2πf, Then

� = 1 −
81 �
�2

The above equation represents the refractive index of the ionosphere. The following
figure represents the principle of refraction and reflection of sky wave by the
ionosphere.
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i

r

900

Ionosphere

Earth

When the EM wave enters in the ionosphere, it undergoes refraction due to the
variation of refractive index. The refractive index of upper layers will be less than the
lower layers. Due to this variation of refractive index, the wave will bend as shown in
the figure. The angel of refraction is go on increases as the wave travels through the
layers of ionosphere. At a peak point the angle of refraction becomes 900, then
onwards the wave travel in downward direction and finally it reaches the receiving
point on the earth surface.
Ray path:
The path followed by the wave is termed as ray path. The following figure represents
the different paths followed by wave under different conditions.

Earth

Ionosphere

When the angle of incidence ( i) is large, then the wave will reflected by the
ionosphere and returned to the earth as indicated by ray 1.When the angle of
incidence decreases, the penetration of wave in to the layer will increases as shown by
the rays 2, 3 and 4. When the angle of incidence is very small, the waves will enter in
to the outer region and they will not return to the earth surface as shown by the rays 5
and 6.
Critical frequency:
The critical frequency (fc) is defined as the highest frequency that returns from the
ionosphere layer at vertical incidence for that particular layer. Different layers will
posses different values of critical frequency. The equation for the critical frequency is
derived as follows:

� =
sin �
sin �

= 1 −
81 �
�2

But the critical frequency is defined for vertical incidence, that is i = 00, then the
above equation becomes

SJC
ET



0 = 1 −
81 �
�2

0 = 1 −
81 �
�2

81 �
�2 = 1

�2 = 81 �
� = �� = 81 � = 9 � = 9 ����

Where Nmax is the maximum electron density of the ionospheric layer.
MUF (Maximum Usable Frequency):
MUF is abbreviated as Maximum Usable Frequency and is defined as the highest
frequency that returns from the ionosphere layer at some angle of incidence other that
the vertical incidence. Major difference between the critical frequency and MUF is,
the critical frequency will be defined with respect to vertical incidence where as MUF
will be defined with respect to some angle of incidence other than the vertical
incidence. The equation for the MUF is derived as follows:

� =
sin �
sin �

= 1 −
81 �
�2

To have reflection from the ionosphere the angel of refraction r must be equal to 900.

Sin �
sin 900 = 1 −

81 �
�2

sin � = 1 −
81 �
�2

���2� = 1 −
81 �
�2

81 �
�2 = 1 − ���2� = ���2�

�2 =
81 �
���2�

=
��

2

���2�
� = ���� =

��

cos �
= �� sec �

The above equation represents the MUF. This equation is specifically called as secant
law because it is in terms of secant.
LUF (Lowest Usable Frequency):
Lowest usable Frequency (LUF) is defined as the frequency below which the entire
signal strength will be absorbed by the ionospheric layer. MUF gives the upper limit
on the usable frequency where as LUF gives the lower limit on the usable frequency.
OF (Optimum Frequency):
MUF and LUF give the upper and lower limit on the usable frequency but they may
not be used to select the practical operating frequency. The reason for this is the MUF
and LUF will change with heights of the layers. Therefore it is required to define on
more frequency called optimum frequency (OF) or optimum working frequency
(OWF) for the selection operating frequency. The Optimum Frequency (OF) is 85%
of MUF.
Virtual height and skip distance:
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Virtual Height: It may be defined as “the height to which a short pulse of energy sent
vertically upward and traveling with the speed of light would reach taking the same
two-way travel time as does the actual pulse reflected from the ionospheric layer”.
The following figure represents the virtual height ant physical height (Actual height).
The virtual height of the ionospheric layer is larger than the actual height.

Earth

Ionosphere

Actual Height Virtual Height

The virtual height of the flat earth shown in figure below

Earth

Ionosphere

h

β

OA

B

C

D

The virtual height of the flat earth shown is given by

ℎ =
� ����

2
where D is the skip distance, β is the elevation angle. The virtual height of the curved
earth is given by

ℎ =
��
2

where c is the velocity of light and T is the two-way transit time of pulse.
Skip distance: The following figure represents the skip distance. The skip distance is
defined as the minimum distance from the transmitter at which sky wave of given
frequency is returned to earth by the ionosphere. It is also defined as minimum
distance within which, the sky wave of given frequency fails to be reflected back.

Ionosphere

Skip Distance

Dead Zone or Silence 
Zone or skip zone

i

Relation between muf and skip distance:
For flat earth, the relation in between the MU=F (fMUF) and skip distance (D) is
derived from the following figure.
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Earth

Ionosphere

h

β

OA

B

C

D

i

From Δ OAB,

cos � =
ℎ

ℎ2 +
�2

4

− 1

� =
sin �
sin �

= 1 −
81 �
�2 = 1 −

81 ����

����
2

But

81 ���� = ��
2

And
Angel of refraction r = 900 to have the reflection by the ionosphere

sin �
sin (90)

= 1 −
��

2

����
2

sin � = 1 −
��

2

����
2

���2� = 1 −
��

2

����
2

��
2

����
2 = 1 − ���2� = ���2� − 2

Substitute equation 1 in equation 2

��
2

����
2 =

ℎ

ℎ2 +
�2

4

2

����
2

��
2 =

4ℎ2 + �2

4ℎ2

����

��
=

4ℎ2 + �2

4ℎ2
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���� = ��
4ℎ2 + �2

4ℎ2 = �� 1 +
�
2ℎ

2

Skip distance is given by

� = 2ℎ
����

2

��
2 − 1

The above equation represents the relation between the MUF and skip distance for flat
earth or plane earth.

WAVEGUIDES
RECTANGULARWAVEGUIDES:
Solution of wave equation in rectangular coordinates
A rectangular waveguide is a hollow metallic tube with a rectangular cross section.
The conducting walls of the waveguide confine the electromagnetic fields and
thereby guide the electromagnetic wave.
The Maxwell’s equation are given by

0 B -(1)
vD  - ( 2)

Hj
t
BE 



 - (3)

t
DJH





But for dielectric medium J = 0, then

Ej
t
DH 



 -(4)

Express equation 3 in rectangular coordinate system

 zzyyxx

zyx

zyx

aHaHaHj

EEE
zyx

aaa









 

 zzyyxx
xy

z
xz

y
yz

x aHaHaHj
y
E

x
E

a
z
E

x
Ea

z
E

y
Ea 













































 

Equate individual components on both sides

x
yz Hj
z
E

y
E 














 - (5)

y
xz Hj
z
E

x
E 













 - (6)

z
xy Hj
y
E

x
E
















- (7)

Similarly express equation 4 in rectangular coordinate system
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 zzyyxx

zyx

zyx

aEaEaEj

HHH
zyx

aaa









 

 zzyyxx
xy

z
xz

y
yz

x aEaEaEj
y
H

x
H

a
z
H

x
Ha

z
H

y
Ha 













































 

Equate individual components on both sides

x
yz Ej
z
H

y
H 














 - (8)

y
xz Ej
z
H

x
H 













 - (9)

z
xy Ej
y
H

x
H
















- (10)

When the wave is traveling along the z-direction, then we can have
z

xx eEE  0

Differentiate above equation with respect to z

)11(0 

 

x
z

x
x EeE
z
E  

Similarly,

)12(0 


 
y

z
y

y EeE
z
E

 

)13(0 

 

x
z

x
x HeH
z
H  

)14(0 


 
z

z
y

y HeH
z
H

 

Substitute equation 11 in equation 6

yx
z HjE
x
E  






 

 - (15)

Substitute equation 12 in equation 5

)16(












xy
z HjE
y
E 

Substitute equation 13 in equation 9

)17(





 



yx
z EjH
x
H 

Substitute equation 14 in equation 8

)18(












xy
z EjH
y
H 

From equation 17, we can have

yx
z EjH
x
H  


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x
HEjH z

yx 


 

)19(1













x
HEjH z

yx 


Substitute equation 19 in equation 16

































x
HEjjE

y
E z

yy
z 


 1

x
HjEj

E
y
E zy

y
z















22

x
HjE

E
y
E zy

y
z















2

y
E

x
HjE

E zzy
y 















2

y
E

x
HjE zz

y 






















2

y
E

x
HjE zz

y 













 




 22

y
E

x
HjEk zz

y 



















2

Where,
 222 k

Known as characteristic equation.

















y
E

x
Hj

k
E zz
y 


2

y
E

kx
Hj

k
E zz
y 







 22





)20(22 








y
E

kx
H

k
jE zz

y


From equation 18, we can have

y
HEjH z

xy 


 













y
HEjH z

xy 

1 - (21)

Substitute equation 21 in equation in 15


















 



y
HEjjE

x
E z

xx
z 




y
HjEjE

x
E zx

x
z














22
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y
HjEE

x
E zx

x
z














2

x
E

y
HjEE zzx

x 













2

x
E

y
HjE zz

x 






















2

x
E

y
HjE zz

x 













 




 22

x
E

y
HjkE zz

x 



















2

















x
E

y
Hj

k
E zz
x 


2

x
E

ky
Hj

k
E zz
x 







 22





)22(22 








x
E

ky
H

k
jE zz

x


Substitute equation 20 in 19





























x
H

y
E
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H

k
jjH zzz

x 22

1 






















x
H

y
E

k
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x
H

k
jH zzz

x 22

221 






















x
H

y
E

k
j
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H
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H zzz

x 22

21 















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











y
E

k
j

x
H

k
H zz

x 22

2

11 


)23(1
22

22
























 


y
E

k
j

x
H

k
kH zz

x




But
 222 k

)24(222  k
Substitute equation 24 in equation 23
























 


y
E

k
j

x
H

k
H zz

x 22

21 


y
E

k
j

x
H

k
H zz

x 






 22

2 11 





)25(22 








y
E

k
j

x
H

k
H zz

x


Substitute equation 22 in equation 21
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





















y
H

x
E

k
j

y
H

k
jH zzz

y 22

221 






















y
H

x
E

k
j

y
H

k
H zzz

y 22

21 




























x
E

k
j

y
H

k
H zz

y 22

2

11 


)26(1
22

22
























 


x
E

k
j

y
H

k
kH zz

y



Substitute equation 24 in equation 26
























 


x
E

k
j

y
H

k
H zz

y 22

21 


x
E

k
j

y
H

k
H zz

y 






 22

2







)27(22 








x
E

k
j

y
H

k
H zz

y


Finally, the basic equations are given by

)28(22 








x
E

ky
H

k
jE zz

x


)29(22 








y
E

kx
H

k
jE zz

y


)30(22 








y
E

k
j

x
H

k
H zz

x


)31(22 








x
E

k
j

y
H

k
H zz

y


TM mode analysis, Expressions for fields:
The structure of rectangular waveguide is shown in the following figure

x
x

y
y

z

a
Figure: Rectangular Waveguide

b
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TM(Transverse Magnetic) mode is defined as the mode of propagation in which there
is no component of magnetic field in the dirction of wave propgtion. For example, if
the wav propagating along the z-direction, then z-component of H will be zero.
The basic equation are given by

)1(22 








x
E

ky
H

k
jE zz

x


)2(22 








y
E

kx
H

k
jE zz

y


)3(22 








y
E

k
j

x
H

k
H zz

x


)4(22 








x
E

k
j

y
H

k
H zz

y


For TM mode Hz = 0, then above four eqauitons becomes

)5(2 




x
E

k
E z
x



)6(2 




y
E

k
E z
y



)7(2 




y
E

k
jH z

x


)8(2 




x
E

k
jH z

y


We know that the wave equation interms of E is
EE 22  -(9)

Where E is Electric field intensity and γ propagation constant and is given by
  jj 2

Then equation 9 becomes
 EjjE  2

- (10)
But, for dielectric medium, the conductivity(σ) = 0, then above equation becomes

EEjE  2222 
Express equation above equation in rectangular coordinate system

   zzyyxxzzyyxx aEaEaEaEaEaE   22

But

2

2

2

2

2

2
2

zyx 












   zzyyxxzzyyxx aEaEaEaEaEaE
zyx


















  2

2

2

2

2

2

2

Equate individual components on both sides

)11(2
2

2

2

2

2

2













x
xxx E

z
E

y
E

x
E 

)12(2
2

2

2

2

2

2















y

yyy E
z
E

y
E

x
E


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)13(2
2

2

2

2

2

2













z
zzz E

z
E

y
E

x
E 

When the wave is traveling along the z-direction, then we can have
z

zz eEE  0

Differentiate above equation with respect to z
z

z
z eE
z
E  



0

Again differentiate with respect to z

  z
z

z
z

z eEeE
z
E    




0
2

02

2

)14(2
2

2





z
z E

z
E 

Substitute equation 14 in equation 13

zz
zz EE

y
E

x
E  22

2

2

2

2









022
2

2

2

2









zz
zz EE

y
E

x
E 

  022
2

2

2

2









z
zz E

y
E

x
E 

But
222 k 

02
2

2

2

2









z
zz Ek

y
E

x
E

But
z

zz eEE  0

00
2

2
0

2

2
0

2








 


z

z

z
z

z
z eEk

y
eE

x
eE 



00
2

2
0

2

2
0

2


















z
zzz Ek

y
E

x
Ee 

)15(00
2

2
0

2

2
0

2









z
zz Ek

y
E

x
E

The above partial differential equation can be solved by using method of variable
separable. Let us assume the solution of product form

)16(0  XYEz
Where X is the function of ‘x’ only and Y is the function of ‘y’ only.
Take

2

2

x


On both sides
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)17(2

2

2
0

2









x
XY

x
Ez

Similarly,

)18(2

2

2
0

2









y
YX

y
Ez

Substitute equations 16, 17 and 18 in eqaution 15

02
2

2

2

2








 XYk

y
YX

x
XY

Dividing throughout by XY, we get

011 2
2

2

2

2







 k

y
Y

Yx
X

X

2
2

2

2

2 11 k
y
Y

Yx
X

X









But,
222
yx kkk 

22
2

2

2

2 11
yx kk

y
Y

Yx
X

X









Then,

2
2

21
xkx

X
X





)19(01 2
2

2





xkx
X

X
2

2

21
yky

Y
Y





)20(01 2
2

2





yky
Y

Y

The solution differential equations 19 and 20 are given by
)21(sincos 21  xkAxkAX xx

)22(sincos 43  ykAykAY yy

Substitute equations 21 and 22 in equation 16
   )23(sincossincos 43210  ykAykAxkAxkAE yyxxz

From the figure of rectangular waveguide, we can have the following boundary
conditions.

At ,0x 00 zE - (24)
At ,ax  00 zE - (25)
At ,0y 00 zE - (26)
At ,by  00 zE - (27)

Apply equation 24 to equation 23
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  ykAykAkAkA yyxx sincos)0(sin)0(cos0 4321 

  ykAykAA yy sincos00 431 

 ykAykAA yy sincos0 431 
To satisfy above relation,

01 A - (27)
Substitute equation 27 in equation 23

  ykAykAxkAE yyxz sincossin0 4320 

  )28(sincossin 4320  ykAykAxkAE yyxz

Apply equation 26 to equation 28
 )0(sin)0(cossin0 432 yyx kAkAxkA 

 32 sin0 AxkA x

xkAA xsin0 32

To satisfy the above relation,
02 A

Or
)29(03 A

But we need to consider A3 = 0, because if A2 = 0 is substituted in equation 28, entire
Ez0 will be zero.
Substitute equation 29 in equation 28

 ykAykxkAE yyxz sincos)0(sin 420 

 ykAxkAE yxz sinsin 420 

)30(sinsin420  ykxkAAE yxz

Apply equation 25 to equation 30
ykakAA yx sinsin0 42 

0sin akx
To satisfy the above relation, we can have

makx 

Where m = 0,1,2,3,4,……

)31(
a
mkx


Substitute equation 31 in equation 30

)32(sinsin420 





 yk
a
xmAAE yz


Apply equation 27 to equation 32

bk
a
xmAA ysinsin0 42 









0sin bk y

To satisfy the above relation, we can have
nbk y 
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Where n = 0,1,2,3,4,……

)33(
b
nk y


Substitute equation 33 in equation 32

)33(sinsin420 















b
yn

a
xmAAEz



Let A2A4 = A, Then

)34(sinsin0 















b
yn

a
xmAEz



Or
)35(sinsin0  ykxkAE yxz

Differentiate above equation with respect to x

)36(sincos0 

 ykxkAk
x
E

yxx
z

Similarly differentiate equation 35 with respect to y

)37(cossin0 

 ykxkAk
y
E

yxy
z

Equations 5,6,7 and 8 can be written as

)38(0
20 





x
E

k
E z
x



)39(0
20 





y
E

k
E z
y



)40(0
20 





y
E

k
jH z

x


)41(0
20 





x
E

k
jH z

y


Substitute equation 36 in 38

 ykxkAk
k

E yxxx sincos20 


)42(sincos20  ykxk
k
AkE yx

x
x



But
)43(0   z

xx eEE 

Substitute equation 42 in 43

)44(sincos2   z
yx

x
x yekxk

k
AkE 

For lossless dielectric medium, the propagation constant will be
)45(  j

Substitute equation 45 in 44

)46(sincos2   zj
yx

x
x yekxk

k
AkjE 

Substitute equation 37 in equation 39
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)47(cossin20  ykxkAk
k

E yxyy


But
)48(0   z

yy eEE 

Substitute equation 47 in 48

)49(cossin2   z
yxyy yekxkAk

k
E 

For lossless dielectric medium, the propagation constant will be
)50(  j

Substitute equation 50 in 49

)51(cossin2   zj
yxyy yekxkAk

k
jE 

Similarly substitute equation 37 in equation 40

)52(cossin20  ykxkAk
k
jH yxyx


But
)53(0   z

xx eHH 

Substitute equation 52 in 53

)54(cossin2   z
yxyx yekxkAk

k
jH 

For lossless dielectric medium, the propagation constant will be
)55(  j

Substitute equation 55 in 54

)56(cossin2   zj
yxyx yekxkAk

k
jH 

Similarly substitute equation 36 in equation 41

)57(sincos20  ykxkAk
k
jH yxxy


But
)58(0   z

yy eHH 

Substitute equation 57 in 58

)59(sincos2   z
yxxy yekxkAk

k
jH 

For lossless dielectric medium, the propagation constant will be
)60(  j

Substitute equation 60 in 59

)61(sincos2   zj
yxxy yekxkAk

k
jH 

But

b
nk

and
a
mk

y

x








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Then finally, the equations for Ex, Ey,Ez, Hx,and Hy are given by

)62(sincos2 





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
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x e
b
yn

a
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)63(cossin2 
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y e
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)34(sinsin 

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
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




  zj

z e
b
yn

a
xmAE 

)64(cossin2 





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



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  zj

x e
b
yn

a
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AnjH 

)65(sincos2 





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




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y e
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yn

a
xm

ak
AmjH 

TE mode analysis, Expressions for fields:
TE(Transverse Electric) mode is defined as the mode of propagation in which there is
no component of electric field in the dirction of wave propgtion. For example, if the
wav propagating along the z-direction, then z-component of E will be zero.
The basic equation are given by

)1(22 








x
E

ky
H
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jE zz
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

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E
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)4(22 
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


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E
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H

k
H zz

y


For TE mode Ez = 0, then above four eqauitons becomes

)5(2 




y
H

k
jE z

x


)6(2 




x
H

k
jE z

y


)7(2 




x
H

k
H z

x


)8(2 




y
H

k
H z

y


We know that the wave equation interms of H is
HH 22  -(9)

Where H is Magnetic field intensity and γ propagation constant and is given by
  jj 2

Then equation 9 becomes
 HjjH  2

- (10)
But, for dielectric medium, the conductivity(σ) = 0, then above equation becomes

HHjH  2222 
Express equation above equation in rectangular coordinate system
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   zzyyxxzzyyxx aHaHaHaHaHaH   22

But

2

2

2

2

2

2
2

zyx 












   zzyyxxzzyyxx aHaHaHaHaHaH
zyx


















  2

2

2

2

2

2

2

Equate individual components on both sides

)11(2
2

2

2

2

2

2













x
xxx H

z
H

y
H

x
H 

)12(2
2

2

2

2

2

2















y

yyy H
z
H

y
H

x
H



)13(2
2

2

2

2

2

2













z
zzz H

z
H

y
H

x
H 

When the wave is traveling along the z-direction, then we can have
z

zz eHH  0

Differentiate above equation with respect to z
z

z
z eH
z
H  



0

Again differentiate with respect to z

  z
z

z
z

z eHeH
z
H    




0
2

02

2

)14(2
2

2





z
z H

z
H 

Substitute equation 14 in equation 13

zz
zz HH

y
H

x
H  22

2

2

2

2









022
2

2

2

2









zz
zz HH

y
H

x
H 

  022
2

2

2

2









z
zz H

y
H

x
H 

But
222 k 

02
2

2

2

2









z
zz Hk

y
H

x
H

But
z

zz eHH  0

00
2

2
0

2

2
0

2








 


z

z

z
z

z
z eHk

y
eH

x
eH 



00
2

2
0

2

2
0

2


















z
zzz Hk

y
H

x
He 
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)15(00
2

2
0

2

2
0

2









z
zz Hk

y
H

x
H

The above partial differential equation can be solved by using method of variable
separable. Let us assume the solution of product form

)16(0  XYH z

Where X is the function of ‘x’ only and Y is the function of ‘y’ only.
Take

2

2

x


On both sides

)17(2

2

2
0

2









x
XY

x
H z

Similarly,

)18(2

2

2
0

2









y
YX

y
H z

Substitute equations 16, 17 and 18 in eqaution 15

02
2

2

2

2








 XYk

y
YX

x
XY

Dividing throughout by XY, we get

011 2
2

2

2

2







 k

y
Y

Yx
X

X

2
2

2

2

2 11 k
y
Y

Yx
X

X









But,
222
yx kkk 

22
2

2

2

2 11
yx kk

y
Y

Yx
X

X









Then,

2
2

21
xkx

X
X





)19(01 2
2

2





xkx
X

X
2

2

21
yky

Y
Y





)20(01 2
2

2





yky
Y

Y

The solution differential equations 19 and 20 are given by
)21(sincos 21  xkAxkAX xx
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)22(sincos 43  ykAykAY yy

Substitute equations 21 and 22 in equation 16
   )23(sincossincos 43210  ykAykAxkAxkAH yyxxz

From the figure of rectangular waveguide, we can have the following boundary
conditions.

At ,0x 00 


x
H z - (24)

At ,ax  00 


x
H z - (25)

At ,0y 00 


y
H z - (26)

At ,by  00 


y
H z - (27)

Differentiate equation 23 with respect to x, then

   ykAykAxkAxkA
xx

H
yyxx

z sincossincos 4321
0 








  ykAykAxkkAxkkA
x
H

yyxxxx
z sincoscossin 4321
0 


 - (28)

Apply equation 24 to equation 28
  ykAykAkkAkkA yyxxxx sincos)0(cos)0(sin0 4321 

  ykAykAkA yyx sincos0 432 
To satisfy above relation,

02 A - (29)
Substitute equation 29 in equation 23

  ykAykAxkAH yyxz sincoscos 4310 

  )30(sincoscos 4310  ykAykAxkAH yyxz

Differentiate above equation with respect to y

  ykAykAxkA
yy

H
yyx

z sincoscos 431
0 








  )31(cossincos 431
0 


 ykkAykkAxkA
y
H

yyyyx
z

Apply equation 26 to equation 31
 )0(cos)0(sincos0 431 yyyyx kkAkkAxkA 

 yx kAxkA 41 cos0 
xkkAA xy cos0 41

To satisfy the above relation,
01 A

Or
)32(04 A
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But we need to consider A4 = 0, because if A1 = 0 is substituted in equation 30, entire
Hz0 will be zero.
Substitute equation 32 in equation 30

 ykAxkAH yxz coscos 310 

)33(coscos310  ykxkAAH yxz

Differentiate above equation with respect to x

 ykxkAA
xx

H
yx

z coscos31
0







)34(cossin21
0 


ykxkkAA

x
H

yxx
z

Apply equation 25 to equation 34
ykakkAA yxx cossin0 21 

0sin akx
To satisfy the above relation, we can have

makx 

Where m = 0,1,2,3,4,……

)35(
a
mkx


Substitute equation 35 in equation 33

)36(coscos310 





 yk
a
xmAAH yz


Differentiate above equation with respect to y






















 yk

a
xmAA

yy
H

y
z coscos31
0 

 ykk
a
xmAA

y
H

yy
z sincos31
0 









 

)37(sincos31
0 









 ykk

a
xmAA

y
H

yy
z 

Apply equation 27 to equation 37

bkk
a
xmAA yy sincos0 31 









0sin bk y

To satisfy the above relation, we can have
nbk y 

Where n = 0,1,2,3,4,……

)38(
b
nk y


Substitute equation 38 in equation 36

















b
yn

a
xmAAH z

 coscos310
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Let A1A3 = A’ Then

















b
yn

a
xmAH z

 coscos'
0

Or
)39(coscos'

0  ykxkAH yxz

Differentiate above equation with respect to x

)40(cossin'0 

 ykxkkA
x
H

yxx
z

Similarly differentiate equation 39 with respect to y

)41(sincos'0 

 ykxkkA
y
H

yxy
z

Equations 5,6,7 and 8 can be written as

)42(0
20 





y
H

k
jE z

x


)43(0
20 





x
H

k
jE z

y


)44(0
20 





x
H

k
H z

x


)45(0
20 





y
H

k
H z

y


Substitute equation 41 in 42

 ykxkkA
k
jE yxyx sincos'

20 


)46(sincos2

'

0  ykxk
k
kAj

E yx
y

x



But
)47(0   z

xx eEE 

Substitute equation 46 in 47

)48(sincos2

'

  z
yx

y
x yekxk

k
kAj

E 

For lossless dielectric medium, the propagation constant will be
)49(  j

Substitute equation 49 in 48

)50(sincos2

'

  zj
yx

y
x yekxk

k
kAj

E 

Similarly ubstitute equation 40 in equation 43

 ykxkkA
k
jE yxxy cossin'

20 


)51(cossin2

'

0  ykxk
k
kAjE yx
x

y


But
)52(0   z

yy eEE 
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Substitute equation 51 in 52

)53(cossin2

'

  z
yx

x
y yekxk

k
kAjE 

For lossless dielectric medium, the propagation constant will be
)54(  j

Substitute equation 54 in 53

)55(cossin2

'

  zj
yx

x
y yekxk

k
kAjE 

Similarly substitute equation 40 in equation 44

 ykxkkA
k

H yxxx cossin'
20 


)56(cossin2

'

0  ykxk
k
kAH yx
x

x


But
)57(0   z

xx eHH 

Substitute equation 56 in 57

)58(cossin2

'

  z
yx

x
x yekxk

k
kAH 

For lossless dielectric medium, the propagation constant will be
)59(  j

Substitute equation 59 in 58

)60(cossin2

'

  zj
yx

x
x yekxk

k
kAjH 

Similarly substitute equation 41 in equation 45

 ykxkkA
k

H yxyy sincos'
20 






)61(sincos2

'

0  ykxk
k
kA

H yx
y

y



But
)62(0   z

yy eHH 

Substitute equation 62 in 61

)63(sincos2

'

  z
yx

y
y yekxk

k
kA

H 

For lossless dielectric medium, the propagation constant will be
)64(  j

Substitute equation 64 in 63

)65(sincos2

'

  zj
yx

y
y yekxk

k
kAj

H 

But

b
nk

and
a
mk

y

x








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Then finally, the equations for Ex, Ey, Hx, Hy and Hz are given by

)66(sincos2

'














  zj

x e
b
yn

a
xm

bk
nAjE 

)67(cossin2

'














  zj

y e
b
yn

a
xm

ak
mAjE 

)68(cossin2

'














  zj

x e
b
yn

a
xm

ak
mAjH 

)69(sincos2

'














  zj

y e
b
yn

a
xm

bk
nAjH 

)70(coscos' 













  zj

z e
b
yn

a
xmAH 

CHARACTERISTIC EQUATION AND CUTOFF FREQUENCIES
The characteristic equation of rectangular waveguide is given by

�2 = �2 + �2��
The characteristic equation will be used to find out certain important characteristics of
rectangular waveguide such as cutoff or critical frequency, cutoff wavelength, Phase
constant, attenuation constant, propagation constant, phase velocity, Group velocity,
Guide wavelength, etc.
The cutoff frequency or critical frequency is defined as the frequency below which
the wave propagation through the waveguide is not possible. The equation for the
cutoff frequency will be derived as follows:
The characteristic equation of rectangular waveguide is given by

�2 = �2 + �2�� [1]
Also

�2 = ��
2 + ��

2 = ��
�

2
+ ��

�

2
[2]

Equate equations 1 and 2

�2 + �2�� =
��
�

2
+

��
�

2

� =
��
�

2
+

��
�

2
− �2��

At cutoff frequency,

��
2�� =

��
�

2
+

��
�

2

��
2 =

1
��

��
�

2
+

��
�

2



























221
b
m

a
m

c































2212
b
m

a
mfc
































221
2
1

b
m

a
mfc



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

























222

2
1

b
m

a
mfc 






























22

2 b
m

a
mfc 



























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The above equation is called as the cutoff frequency.
FILTER CHARACTERISTICS
The waveguide act as a high pass filter i.e. it allows only high frequencies. The filter
characteristic of waveguide is shown in the following figure.

The waveguide allows the signal when the signal frequency is greater than the cutoff
frequency fc as shown in the figure above. The cutoff frequency or critical frequency
is defined as the frequency below which the wave propagation through the waveguide
is not possible. That is below the cutoff frequency, only attenuation will be present.
The cutoff frequency of rectangular waveguide is given by

�� =
�
2

�
�

2
+

�
�

2

DOMINANT AND DEGENERATE MODES
A mode is defined as a field distribution or configuration within a waveguide. In
general a mode is represented as TEmn, TMmn. A mode which is having lowest cutoff
frequency or highest cutoff wavelength is called as the dominant mode. In case of
rectangular waveguide the dominant mode is TE10 when a > b. Where a and b are the
dimensions of the waveguide. A set of modes having the same cutoff frequency are
known as the degenerate modes. In rectangular waveguide TE10 & TM10, TE11 &
TM11, TE01 & TM01, etc are called degenerate modes.

Frequency

Response
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MODE CHARACTERISTICS- PHASE AND GROUP VELOCITIES
Phase velocity is defined as the speed or velocity with which the signal travels
through the medium. The phase velocity is represented with vp or with c in case of
free space. The phase velocity is given by

�� =
�
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=
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Therefore, phase velocity in a rectangular waveguide is given by
�� =

�
1 − ��/� 2
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1 − �/��
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Group velocity is defined as the rate at which the velocity changes. It is also defined
as the speed at which the group of waves or wavefront travels through the medium. It
represented with ��. The group velocity is given by
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PHASE CONSTANT AND ATTENUATION CONSTANT
The phase constant is derived as follows:
We have
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The attenuation constant is derived as follows:
We have
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WAVELENGTHS AND IMPEDANCE RELATIONS
(1) Cutoff wavelength and guide wavelength:
The cutoff wavelength or critical wavelength is defined as the wavelength below
which the wave propagation through the waveguide is possible. It is represented with
��. The cutoff wavelength is inversely proportional to the cutoff frequency.
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Where λ is the signal wavelength and λc is the cutoff wavelength.
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(2) Wave impedance:
The wave impedance is defined as the ratio between the electric field vector (E) and
magnetic field vector (H). That is

�� =
��

��
=−
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��
The wave impedance for TM waves is given by
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Similarly for TE waves the wave impedance is given by

)5(
y

x
TEg H

EZ 

But for TE mode,

)6(sincos2

'














  zj

x e
b
yn

a
xm

bk
nAjE 

)7(sincos2

'














  zj

y e
b
yn

a
xm

bk
nAjH 

Substitute equations 6 and 7 in equation 5

zj

zj

TE

e
b
yn

a
xm

bk
nAj

e
b
yn

a
xm

bk
nAj













































sincos

sincos

2

'

2

'


 TE

But � = �2�� − ��
2��

Therefore




22
c

TE




2

1 











f
fc

TE





2

1 











f
fc

TE





2

2

1

1













f
fc

TE 


2

1

1













f
fc

TE 


SJC
ET



��� =
�0

1 −
��

�

2

WAVE PROPAGATION IN THE GUIDE
For TE mode we have the filed expressions as
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Examination of above equations shows that the field components all involve the
terms sine or cosine of ���
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For TE10 mode the above equations becomes

�� =
���
�2 �' ��

�
cos

���
�

sin
���

�
�−��� = 0

�� =−
���
�2 �' ��

�
sin

���
�

cos
���

�
�−��� =−

���
�2 �' �

�
sin

��
�

�−���

�� =
���'��

�2�
sin

���
�

cos
���

�
�−��� =

���'�
�2�

sin
��
�

�−���

�� =
���'��

�2�
cos

���
�

sin
���

�
�−��� = 0

zj
z e

a
xAH  





 cos'

Let us consider y-component of E,

�� =−
���
�2 �' �

�
sin

��
�

�−��� − 1

But

sin � =
��� − �−��

2�
Or

sin
��
�

=
����

� − �−���
�

2�
− 2

Substitute equation 2 in equation 1

�� =−
���
�2 �' �

�
����

� − �−���
�

2�
�−���

�� =−
��
2�2 �' �

�
����

� − �−���
� �−���
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�� =−
��
2�2 �' �

�
�−�� �+��

�� − �−�� �−��
�� − 3

In the above equation, the first term represents a wave traveling in the positive z-
direction at an angle

θ = tan−1 �
��

With z-axis. The second term of eq. (3) represents a wave traveling in the positive
z-direction at an angle −� . The field may be depicted as a sum of two plane TEM
waves propagating along zigzag paths between the guide walls at x = 0 and x = a as
illustrated in Figure 1. The decomposition of the TE10 mode into two plane waves can
be extended to any TE and TM mode. When n and m are both different from zero,
four plane waves result from the decomposition.

Figure 1: Decomposition of TE10 mode into two plane waves

The wave component in the z-direction has a different wavelength from that of the
plane waves. This wavelength along the axis of the guide is called the waveguide
wavelength and is given by

�� =
�

1 −
��

�

2

Where

λ =
�
f

Known as signal wavelength
As a consequence of the zigzag paths, we have three types of velocity: the medium
veocity c, the phase velocity vp, and the group velocity vg. The phase velocity is given
by

�� =
�

1 −
��

�

2

This shows that vp > c. That is vp is greater than the speed of light in vacuum. Does
this violate Einstein's relativity theory that messages cannot travel faster than the
speed of light? Not really, because information (or energy) in a waveguide generally
does not travel at the phase velocity. Information travels at the group velocity, which
must be less than the speed of light. The group velocity ug is the velocity with which
the resultant repeated reflected waves are traveling down the guide and is given by

�� = � 1 −
��

�

2
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POWER TRANSMISSION IN RECTANGULAR WAVEGUIDE
The power transmitted through the waveguide can be calculated by using the pointing
theorem. The average power transmission is given by

��� =
1
2

� × �∗ ∙ ���

��� =
1

2��
� 2��� =

��

2
� 2���

Where

�� =
��

��
=−

��

��

� 2 = ��
2 + ��

2

� 2 = ��
2 + ��

2

The wave impedance for TEmn waves is given by

�� =
�0

1 − ��/� 2

Therefore the power transmission for TEmn waves is given by

��� =
1 − ��/� 2

2�0 0

�

0

�
��

2 + ��
2

�� ����

Similarly the wave impedance for TMmn waves is given by

�� = �0 1 − ��/� 2

Therefore the power transmission for TMmn waves is given by

��� =
1

2�0 1 − ��/� 2 0

�

0

�
��

2 + ��
2

�� ����

ATENUATION
There are two types of power losses in rectangular waveguide:

(i) Losses in the dielectric
(ii) Losses in the guide walls

The losses due to dielectric will arise due to finite conductivity of the dielectric. When
the dielectric posses conductivity, there will be loss of power by the dielectric. The
loss factor or attenuation factor (α) due to the any dielectric is given by

222



 g

The attenuation losses due to dielectric for TE waves and TM waves are given by

 2
0

122 ffc

TE
g




 fot TE mode

 20 1
22

ffcTM
g 

 for TM mode

The power losses due to guide walls will arise due to the presence of finite resistivity
in the guide walls. The power loss due to the guide walls can be obtained as follows:
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Let the EM waves traveling along the z-direction, then E and H can be written as
z

z
geEE  0

z
z

geHH  0

Where Eoz and Hoz are the field intensities at z = 0. The time average power flow
decreases proportianally to zge 2 . Hence

  z
losstrtr

gePPP 2

  zPPP glosstrtr 21

lossglosstrgtrtr zPPzPPP  22 

But
12,  zPP gtrloss 

losstrgtrtr PzPPP  2

Divide throughout with Ptr

tr

loss
g P

Pz  211

tr

loss
g P

Pz 2

tr

loss
g zP

P
2



)1(
2


tr

L
g P

P

Where

z
PP loss

L 

But

�� = ��
2

��
2��� �����/���� �����ℎ - (2)

dsH
Z

P g
tr

2

2  - (3)

Substitute equations 2 and 3 in equation1














dsH

Z

dsHR

g

t
s

g
2

2

2
2

2

The attenuation due to the guide walls is given by

�� =
�� ��

2���
2�� � 2���
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WAVEGUIDE CURRENT ANDMODE EXCITATION
For either TM or TE modes, the surface current density K on the walls of the
waveguide may be found using

K = an × H − 1
where an is the unit outward normal to the wall and H is the field intensity evaluated
on the wall. The current flow on the guide walls for TE10 mode propagation can be
found using eq. (1). The result is sketched in Figure 1.

Figure 1: Surface current on guide walls for TE10 mode.

The surface charge density ps on the walls is given by
ps = an • D = an • eE

where E is the electric field intensity evaluated on the guide wall
A waveguide is usually fed or excited by a coaxial line or another waveguide.

Most often, a probe (central conductor of a coaxial line) is used to establish the field
intensities of the desired mode and achieve a maximum power transfer. The probe is
located so as to produce E and H fields that are roughly parallel to the lines of E and
H fields of the desired mode. To excite the TE10 mode, for example,

�� =−
���
�2 �' �

�
sin

��
�

�−���

we know that Ey has maximum value at x = a/2. Hence, the probe is located at x = a/2
to excite the TE10 mode as shown in Figure 2(a). Similarly, the TM11 mode is
launched by placing the probe along the z-direction as in Figure 2(b).

Figure 2: Excitation of modes in a rectangular waveguide
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CIRCULARWAVEGUIDE
A circular waveguide is a tubular, circular conductor. A plane wave propagating
through a circular waveguide results in a transverse electric (TE) or transerse
magnetic (TM) mode. Several other types of waveguides, such as elliptical and
reentrant guides, also propagate electromagnetic waves.

As described in earlier section for rectangular waveguides, only a sinusoidal
steadystate or frequency-domain solution will be attempted for circular waveguides.
A cylindrical coordinate system is shown in Figure below.

The field expressions for TEnp mode of circular waveguide are given by

�� = �0���
���

' �
�

sin �� �−����

�� = �0���
' ���

' �
� cos �� �−����

�� = 0

�� =−
�0�

��
��

���
' �
� cos �� �−����

�� =
�0�

��
��

���
' �
�

sin �� �−����

�� = �0���
���

' �
� cos �� �−����

where Zg = Er/ Hϕ = - Eϕ,/ Hr has been replaced for the wave impedance in the
guide and where n = 0, 1, 2, 3, ... and p = 1, 2, 3, 4, ....
The mode propagation constant is given by

�� = �2�� −
���

'

�

2

The cutoff frequency for TE modes in a circular guide is then given by

�� =
���

'

2�� ��
and the phase velocity for TE modes is
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�� =
�
��

=
�

1 −
��

�

2

Where

� =
1
με

=
c

μ0ε0
The wavelength and wave impedance for TE modes in a circular guide are
given, respectively, by

�� =
�

1 −
��

�

2

�� =
��
��

=
�

1 −
��

�

2

The field expressions for TMnp mode of circular waveguide are given by

�� = �0���
' ����

� cos �� �−����

�� = �0���
����

�
sin �� �−����

�� = �0���
����

�
cos �� �−����

�� =−
�0�

��
��

����
�

sin �� �−����

�� =
�0�

��
��
' ����

�
cos �� �−����

�� = 0
Some of the TM-mode characteristic equations in the circular guide are identical to
those of the TE mode, but some are different. For convenience, all are shown
here:
The mode propagation constant is given by

�� = �2�� −
���

�

2

The cutoff frequency for TE modes in a circular guide is then given by

�� =
���

2�� ��
and the phase velocity for TE modes is

�� =
�
��

=
�

1 −
��

�

2

Where

� =
1
με

=
c

μ0ε0
The wavelength and wave impedance for TE modes in a circular guide are
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given, respectively, by

�� =
�

1 −
��

�

2

�� =
��

��
= � 1 −

��

�

2

Impossibility of tem modes in waveguide
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Fig: Coaxial Cable

The Transverse Electromagnetic (TEM) modes will not possible in waveguides, but
they are possible in coaxial transmission lines because of the following reasons:

(i) For the existence of any mode such as TE, TM, TEM, etc., the
requirement is a physical inner conductor or at least an existence of
axial component of the field.

(ii) In case of coaxial transmission line, there is physical inner conductor
and hence it is possible, where as in case of waveguide there is no
physical inner conductor.

(iii) TE and TM modes are possible in waveguides because of the existence
of axial components such as Ez in TM mode and Hz in TE mode.

Therefore due to the above reasons the TEM mode will not possible in waveguides.
Note that, the magnetic field can exist around any physical conductor or at least
around the axial component.
CAVITY RESONATORS
RECTANGULAR CAVITY RESONATOR:
In general, a cavity resonator is a metallic enclosure that confines the electromagnetic
energy. The stored electric and magnetic energies inside the cavity will determine the
equivalent inductance and capacitance. The energy dissipated by the finite
conductivity of the cavity walls determines the equivalent resistance.

The rectangular cavity resonator is shown in the following figure.
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Fig: Rectangular cavity resonator

a

b
d

The field equation of rectangular cavity resonator for TE and TM modes are
given by

�� = �0����
���

�
���

���
�

���
���
�

��� ����� ����
Where
m = 0, 1, 2, 3, … represents the number of the half-wave periodicity in the x
direction
n = 0, 1, 2, 3, … represents the number of the half-wave periodicity in the y
direction
p = 1, 2, 3, … represents the number of the half-wave periodicity in the z
direction

�� = �0����
���

�
���

���
�

���
���
�

��� ����� ����
Where
m = 1, 2, 3, … represents the number of the half-wave periodicity in the x
direction
n = 1, 2, 3, … represents the number of the half-wave periodicity in the y
direction
p = 0, 1, 2, 3, … represents the number of the half-wave periodicity in the z
direction

Dominant modes and resonant frequencies
A mode having the lowest resonant frequency is known as the dominant mode. The
resonant frequency of the rectangular cavity resonator is given by

�� =
1

2 ��
�
�

2
+

�
�

2
+

�
�

2

From the above equation we can find the resonant frequency of the rectangular cavity
resonator. The lowest value of resonant frequency will occur for the mode TE101 when
the condition a > b < d satisfied. Therefore the dominant mode of rectangular cavity
resonator is given by

��101 �ℎ�� � > � < �
The frequency at which the response of resonator is maximum is called as resonant
frequency. At resonant frequency the peak energies stored in the electric and magnetic
fields will be equal.
The characteristic equation of rectangular cavity resonator is given by
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�2 =
��
�

2
+

��
�

2
+

��
�

2

By solving the above equation we can obtain the resonant frequency as

�� =
1

2 ��
�
�

2
+

�
�

2
+

�
�

2

CYLINDRICAL CAVITIES:

d

φ

z

z

x

y

r

a

0

Fig: Cylindrical cavity resonator

A circular cylindrical cavity resonator is shown in the figure above.
The circular or cylindrical cavity resonator is made from the circular wave guide. The
field equations of circular cavity resonator are given by

�� = �0���
�'���

�
cos �∅ ���

���
�

��� �����

Where
n = 0,1,2,3,… is the number of periodicity in the φ direction

p = 1,2,3,4,… is the number of zeros of the field in the radial
direction

q = 1,2,3,4,… is the number of half-waves in the axial direction
Jn = Bessell’s function of the first kind
H0z = amplitude of the magnetic field

�� = �0���
����

�
cos �∅ ���

���
�

��� �����

Where
n = 0,1,2,3,… is the number of periodicity in the φ direction

p = 1,2,3,4,… is the number of zeros of the field in the radial
direction

q = 0,1,2,3,… is the number of half-waves in the axial direction
Jn = Bessell’s function of the first kind
E0z = amplitude of the electric field

Dominant modes and resonant frequencies
A mode having the lowest resonant frequency is known as the dominant mode. The
resonant frequency of the cylindrical cavity resonator is given by

�� =
1

2 ��
�'��

�

2

+
��
�

2
��� �� ����
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�� =
1

2 ��
���

�

2

+
��
�

2
��� �� ����

From the above equation we can find the resonant frequency of the cylindrical cavity
resonator. The lowest value of resonant frequency will occur for the mode TM110

when the 2a > d and TE111 when d ≥ 2a. Therefore the dominant modes of cylindrical
cavity resonator are given by

��110 �ℎ�� 2� > �
��111 �ℎ�� � ≥ 2�

The frequency at which the response of resonator is maximum is called as resonant
frequency. At resonant frequency the peak energies stored in the electric and magnetic
fields will be equal.
The characteristic equation of cylindrical cavity resonator is given by

�2 =
�'��

�

2

+
��
�

2
��� �� ����

�2 =
���

�

2

+
��
�

2
��� �� ����

By solving the above equation we can obtain the resonant frequency as

�� =
1

2 ��
�'��

�

2

+
��
�

2
��� �� ����

�� =
1

2 ��
���

�

2

+
��
�

2
��� �� ����

SOLVED PROBLEMS
1. Two identical point sources separated by a distance‘d’ each source having

a field pattern given by Eo = E1 sinθ. If d = λ/2 and phase angle α = 0
derive the expression for field pattern. Plot the pattern.

Ans:
Given data:

�0 = �1 sin �
� = �/2

For broad side array, the electric field strength is given by

� = 2�0 cos
�
2

� = �� cos � =
2�
�

�
2 cos � = � cos �

� = 2 �1 sin � cos
� cos �

2
The pattern is shown in figure below.
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2. Calculate the directivity of a given linear broad side uniform array of 10
isotropic elements with separation of λ/4 between the elements.

Ans:
Given data:

No.of elements(N) = 10
Spacing between the elements(d) = λ/4

����������� � = 2�
�
�

= 2 × 10
�/4
�

= 5
Or

����������� � = 10 log 6 = 6.99 ��
3. Calculate the directivity of a given linear end fire uniform array of 10

isotropic elements with separation of λ/4 between the elements.
Ans:
Given data:

No.of elements(N) = 10
Spacing between the elements(d) = λ/4

����������� � = 4�
�
�

= 4 × 10
�/4
�

= 10
Or

����������� � = 10 log 10 = 10 ��

4. Calculate the directivity of a given linear end fire array with improved
directivity , Hansen-Woodyard uniform array of 10 elements with
separation of λ/4 between the elements.

Ans:
Given data:

No.of elements(N) = 10
Spacing between the elements(d) = λ/4

����������� � = 1.789 4�
�
�

= 1.789 4 × 10
�/4
�

= 17.89
Or

����������� � = 10 log 17.89 = 12.551 ��
5. A uniform linear end fire array consists of 16 isotropic point sources with

spacing of λ/4. If the phase difference α = -900 calculate
(a) HPBW (b) Beam solid angle (c) Directivity (d) Effective

aperture
Ans:

Given data:
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No.of elements (N) = 16
Spacing between the elements(d) = λ/4

(a)

���� =
2λ
Nd

× 57.3 = 57.3
2λ

16 × λ
4

= 420

(c)

����������� � = 4�
�
�

= 4 × 16
�/4
�

= 16
Or

����������� � = 10 log 10 = 12.04 ��
(b)

���� ����� ����� =
4�

�����������
=

4�
16

= 0.8373 ����������

(d)

� = � =
4���

�2

�� =
� �2

4� =
0.8373 × �2

4� = 1.194 �2

6. In order to scan the beam of linear array to 300 off broadside, calculate
the inner element phase shift required if the elements are 3 cm spaced and
the frequency is 64 KHz.

Ans:
Given data:

� = 900 − 300 = 600

� = 3 �� = 0.03 �
� = 64 ���

� =
�
�

=
3 × 108

64 × 103 = 4.68 × 103

����� ������� �ℎ��� �ℎ��� � =− �� cos � =−
2�
�

× 0.03 × cos 60

=−
2�

4.68 × 103 × 0.03 × 0.5

= 1.153 × 10−3 ������
7. Calculate

(i) HPBW (ii) Solid angle if a linear end fire array having 10
isotropic point source with λ/2 spacing and phase difference δ = 900

Ans:
Given data:

� = � = 900

N = 10
d = λ/2

(i)

���� =
2λ
Nd

× 57.3 = 57.3
2λ

10 × λ
2

= 36.240
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����������� � = 4�
�
�

= 4 × 10
�/2
�

= 20

���� ����� ����� =
4�

�����������
=

4�
20

= 0.628 ����������

8. Draw the radiation pattern of 8-element broad side array with spacing d
= λ/2

Ans:
Given data:

No.of elements (N) = 8
Spacing between the elements (d) = λ/2

Pattern maxima:

���� ����� = cos−1 ±
2� + 1 �

2�� = cos−1 ±
2� + 1 �
2 8 �/2

���� ����� = cos−1 ±
2� + 1

8
When n = 1,

���� ����� = cos−1 ±
3
8

=± 67.980 & ± 112.020

When n = 2,

���� ����� = cos−1 ±
5
8

=± 51.320 & ± 128.680

When n = 3,

���� ����� = cos−1 ±
7
8

=± 28.950 & ± 151.0450

When n = 4,

���� ����� = cos−1 ±
9
8

= ��� ���������
Pattern minima:

���� ����� = cos−1 ±
��
��

= cos−1 ±
��

8�/2
= cos−1 ±

�
4

When n = 1,

���� ����� = cos−1 ±
1
4

=± 75.50, ± 104.470

When n = 2,

���� ����� = cos−1 ±
2
4

=± 600, ± 1200

When n = 3,

���� ����� = cos−1 ±
3
4

=± 41.4090, ± 138.590

When n = 4,

���� ����� = cos−1 ±1 = 00, 1800

The radiation pattern is shown in figure below.
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+28.950
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-67.980
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+128.680

+151.0450

-112.020

-128.680

-151.0450

9. Draw the radiation pattern of 4-element broad side and end fire array
with d = λ/2

Ans:
Broad side array:

Given data:
No.of elements (N) = 4
Spacing between the elements (d) = λ/2

Pattern maxima:

���� ����� = cos−1 ±
2� + 1 �

2�� = cos−1 ±
2� + 1 �
2 4 �/2

���� ����� = cos−1 ±
2� + 1

4
When n = 1,

���� ����� = cos−1 ±
3
4

=± 41.4050 & ± 138.590

When n = 2,

���� ����� = cos−1 ±
5
4

= ��� ��������
Pattern minima:

���� ����� = cos−1 ±
��
��

= cos−1 ±
��

4�/2
= cos−1 ±

�
2

When n = 1,

���� ����� = cos−1 ±
1
2

=± 600, ± 1200

When n = 2,

���� ����� = cos−1 ±1 = 00, 1800

When n = 3,
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���� ����� = cos−1 ±
3
2

= ��� ���������
The radiation pattern is shown in figure below.

00
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1800

2700

+41.4050

-41.4050

+138.590

-138.590

End fire array:
Pattern maxima:

���� ����� = cos−1 ±
2� + 1 �

2��
+ 1 = cos−1 ±

2� + 1 �
2 4 �

2

+ 1

���� ����� = cos−1 ±
2� + 1

4
+ 1

When n = 1,

���� ����� = cos−1 ±
3
4

+ 1 = cos−1 7
4

& cos−1 1
4

=± 75.50

When n = 2,

���� ����� = cos−1 ±
5
4

+ 1 = cos−1 9
4

& cos−1 −
1
4

=± 104.40

When n = 3,

���� ����� = cos−1 ±
7
4

+ 1 = cos−1 11
4

& cos−1 −
3
4

=± 138.590

When n = 4,

���� ����� = cos−1 ±
9
4

+ 1 = cos−1 13
4

& cos−1 −
5
4

= ��� ���������
Pattern minima:

���� ����� = 2 sin−1 ±
��

2��
= 2 sin−1 ±

��
2 4 �/2

���� ����� = 2 sin−1 ±
�
4

When n = 1,

���� ����� = 2 sin−1 ±
1
4

=± 600

When n = 2,
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���� ����� = 2 sin−1 ±
2
4

=± 900

When n = 3,

���� ����� = 2 sin−1 ±
3
4

=± 1200

When n = 4,

���� ����� = 2 sin−1 ±
4
4

=± 1800

The resultant pattern is shown in figure below.

00

900

1800

2700

+75.50
+104.40

+138.50

-138.50

-104.40 -75.50

10. Calculate the distance beyond which the earth’s curvature is to be
accounted at frequency of (a) 100 KHz (b) 1 MHz (c) 10 MHZ.

Ans: f = 100 KHz = 0.1 MHz

� =
50

����
1/3 �� ����� =

50
0.11/3 = 107.75 �����

(a) f = 1 MHz

� =
50

����
1/3 �� ����� =

50
11/3 = 50 �����

(b) f = 10 MHz

� =
50

����
1/3 �� ����� =

50
101/3 = 23.21 �����

11. Obtain the roughness factor at 3 MHz for an earth having σ = 0.5 with θ =
300. Calculate the ratio of roughness factors for the same earth and same
θ if the frequency is doubled.

Ans: Given data: Frequency (f) = 3 MHz
Wavelength (λ) = c/f =3X108/3X106 = 100 m

Standard deviation (σ) = 0.5
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Angle of incidence (θ) = 300

����ℎ���� ������ � =
4������

�
=

4� × 0.5 × sin (30)
100

= 0.031415927
When the frequency is doubled, Frequency (f) = 2X3 MHz = 6 MHz

Wavelength (λ) = c/f =3X108/6X106 = 50 m
Standard deviation (σ) = 0.5
Angle of incidence (θ) = 300

����ℎ���� ������ � =
4������

�
=

4� × 0.5 × sin (30)
50

= 0.06282
12. Evaluate the roughness factors for the earth at 10 MHz if σ = 5 for θ

equal to (a) 300 (b) 450 (c) 600
Ans:

(a) Given data: Frequency (f) = 10 MHz
Wavelength (λ) = c/f =3X108/10X106 = 10 m

Standard deviation (σ) = 5
Angle of incidence (θ) = 300

����ℎ���� ������ � =
4������

�
=

4� × 5 × sin (30)
10

= 3.141
(b) Given data: Frequency (f) = 10 MHz

Wavelength (λ) = c/f =3X108/10X106 = 10 m
Standard deviation (σ) = 5

Angle of incidence (θ) = 450

����ℎ���� ������ � =
4������

�
=

4� × 5 × sin (45)
10

= 4.442
(c) Given data: Frequency (f) = 10 MHz

Wavelength (λ) = c/f =3X108/10X106 = 10 m
Standard deviation (σ) = 5

Angle of incidence (θ) = 600

����ℎ���� ������ � =
4������

�
=

4� × 5 × sin (60)
10

= 5.44
13. The transmitting and receiving antennas with respective heights of 49 m

and 25 m are installed to establish communication at 100 MHz with
transmitted power of 100 watts. Determine the LOS range and received
signal Strength.

Ans: Given data: Height of the transmitting antenna ht =
49 m

Height of the receiving antenna hr = 25 m
Frequency f = 100 MHz

Wavelength λ =
c
f

=
3 × 108

100 × 106 = 3 m

Power transmitted P = 100 watts
LOS range is given by (including effective earth’s radius)

� = 4.12 ℎ� + ℎ� ��
� = 4.12 49 + 25 �� = 4.12 7 + 5 �� = 49.44 ��

The received field strength is given by

�� =
88 � ℎ�ℎ�

��2 =
88 100 × 49 × 25

3 × 49.44 × 1000 2 = 1.47 �/�
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14. Calculate the maximum distance at which signal from transmitting
antenna with 144 m height would be received by the receiving antenna of
25 m height.

Ans: Given data: Height of the transmitting antenna ht =
144 m

Height of the receiving antenna hr = 25 m
Maximum distance or LOS range is given by (including effective earth’s radius)

� = 4.12 ℎ� + ℎ� �� = 4.12 144 + 25 �� = 4.12 12 + 5 ��
� = 70.04 ��

15. A transmitting antenna of 100 m height radiates 40 kW at 100 MHz
uniformly in azimuth plane. Calculate the maximum LOS range and
strength of the received signal at 16 m high receiving antenna at a
distance of 10 km. At what distance would the signal strength reduces to 1
mV/m.
Ans: Given data: Height of the transmitting antenna ht =
100 m

Height of the receiving antenna hr = 16 m
Frequency f = 100 MHz

Wavelength λ =
c
f

=
3 × 108

100 × 106 = 3 m

Power transmitted P = 40 kW
Distance d = 10 km

LOS range is given by (including effective earth’s radius)
� = 4.12 ℎ� + ℎ� �� = 4.12 100 + 16 �� = 4.12 10 + 4 ��

= 57.68 ��
The received field strength is given by

�� =
88 � ℎ�ℎ�

��2 =
88 40 × 103 × 100 × 16

3 × 10 × 1000 2 = 98.36 ��/�

The distance at which the field strength reduces to 1 mV/m is

�� =
88 � ℎ�ℎ�

��2

� =
88 � ℎ�ℎ�

�� � =
88 40 × 103 × 100 × 16

1 × 10−6 × 3 = 96.88 ��

16. A directional antenna with 10 dB gain radiates 500 watts. The receiving
antenna at 15 km distance receives 2 μW. Find the effective area of the
receiving antenna. Assume negligible ground and ionospheric reflections.

Ans: Given data: Gain of transmitting antenna GT = 10 dB
Gain without dB is given by

10 = 10 log ��
�� = 10

Power transmitted PT = 500 W
Distance d = 15 km

Power received PR = 2 μW
We know that,

�� = ������
�

4��

2
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�� =
����

4��2 ��

�� =
�� 4��2

����
=

2 × 10−6 × 4� × 15 × 1000 2

500 × 10
= 1.13 �2

17. Find the basic path loss for communication between two points 3000 km
apart at a frequency of 3 GHz.

Ans: Given data: Distance d = 3000 km
Frequency f = 3 GHz

���ℎ ���� = 32.45 + 20 log10 ���� + 20 log10 ���
���ℎ ���� = 32.45 + 20 log10 (3 × 1000) + 20 log10 (3000) = 171.534 dB

18. Calculate the skip distance for flat earth with MUF of 10 MHz if the wave
is reflected from a height of 300 km where the maximum value of n is 0.9

Ans: Given data: MUF fMUF = 10 MHz
Height of the layer h = 300 km
Refractive index μ or n = 0.9

� = 1 −
81 ����

�2

���� =
1 − �2 �2

81
= 23.45 × 1010

Critical frequency is �� = 9 ���� = 9 23.45 × 1010 = 4.36 ���
Skip distance is given by

� = 2ℎ
����

2

��
2 − 1 = 2 × 300 × 103 10 × 106 2

4.36 × 106 2 − 1 = 3916.2 ��

19. The critical frequencies at an instant observed for E, F1 and F2 layers
were found to be 3, 5 and 9 MHz. Find the corresponding concentration
of electrons in these layers.
Ans: The critical frequency is given by

�� = 9 ����
Then,

���� =
��

2

81
For E layer, fc = 3 MHz,

���� =
3 × 103 2

81
= 0.111 × 1012

For F1 layer, fc = 5 MHz,

���� =
5 × 103 2

81
= 0.3086 × 1012

For F2 layer, fc = 9 MHz,

���� =
9 × 103 2

81
= 1012

20. An air-filled rectangular waveguide of inside dimensions 7 x 3.5 cm
operates in the dominant TE10 mode

a. Find the cutoff frequency.
b. Determine the phase velocity of the wave in the guide at a frequency of 3 .5
GHz.
c. Determine the guided wavelength at the same frequency.
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Solution
Width of waveguide(a) = 7 cm = 0.07 m
Height of the waveguide(b) = 3.5 cm = 0.035 m
Mode = TE10, i.e m = 1, n = 0

(a) The cutoff frequency is given by
22822

035.0
0

07.0
1

2
103

2






























b
n

a
mcfc

GHzfc 14.21014.2 9 

(b) The signal frequency (f) = 3.5 GHz
The phase velocity is given by

2

1 











f
f

cv
c

p

smvp /1078.3

105.3
1014.21

103 8

2

9

9

8



















(c)
The signal frequency (f) = 3.5 GHz
Signal Wavelength is

m
f
c 086.0

105.3
103

9

8







The Guide wavelemgth is given by

























2

1
f
fc

g


cmmg 8.10108.0

105.3
1014.21

086.0
2

9

9






























21. An air-filled rectangular waveguide has dimensions of a = 6 cm and b = 4
cm. The signal frequency is 3 GHz. Compute the following for the TE10,
TE01, TE11, and TM11 modes
(a) Cutoff frequency
(b) Wavelength in the waveguide
(c) Phase constant and phase velocity in the waveguide
(d) Group velocity and wave impedance in the waveguide

Solution:
Width of waveguide(a) = 6 cm = 0.06 m
Height of the waveguide(b) = 4 cm = 0.04 m
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The signal frequency (f) = 3 GHz
Signal Wavelength is

m
f
c 1.0

103
103

9

8







For TE10mode:
(a) The cutoff frequency is given by

22822

04.0
0

06.0
1

2
103

2






























b
n

a
mcfc

GHzfc 5.21025 8 
(b)

The Guide wavelemgth is given by

2

1 











f
fc

g


cmmg 1818.0

103
105.21

1.0
2

9

9

















(c) The phase constant is given by















































22

11
f
f

cf
f cc 















































22

1212
f
f

f
f

c
f cc




mrad /73.34
103
105.21

1.0
2

2

9

9





























The phase velocity is given by

2

1 











f
f

cv
c

p

smvp /10427.5

103
105.21

103 8

2

9

9

8



















(d) The group velocity is given by

sm
f
fcv c

g /106583.1
103
105.211031 8

2

9

9
8

2






















For TE01mode:
(a) The cutoff frequency is given by
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22822

04.0
1

06.0
0

2
103

2






























b
n

a
mcfc

GHzfc 75.3105.37 8 
f < fc (3 GHz < 3.75 GHz ), hence TE01 mode is not possible though the waveguide
For TE11mode:
(a) The cutoff frequency is given by

22822

04.0
1

06.0
1

2
103

2






























b
n

a
mcfc

GHzfc 506.41006.45 8 
f < fc (3 GHz < 4.506 GHz ), hence TE11 mode is not possible though the waveguide
For TM11 mode:
(b) The cutoff frequency is given by

22822

04.0
1

06.0
1

2
103

2






























b
n

a
mcfc

GHzfc 506.41006.45 8 
f < fc (3 GHz < 4.506 GHz ), hence TM11 mode is not possible though the waveguide

22. The dominant mode TE10 is propagated in a rectangular waveguide of
dimension a = 6 cm and b = 4 cm. The distance between maximum and
minimum is 4.47 cm. Determine the signal frequency of the dominant
mode

Solution:
Width of waveguide(a) = 6 cm = 0.06 m
Height of the waveguide(b) = 4 cm = 0.04 m

The distance between maximum and minimum (λg /4) = 4.47 cm = 0.0447 m

0447.0
4
g

mg 1788.00447.04 
For dominant mode (TE10) the cutoff wavelength is given by

2222 01

22



































bab
n

a
m

c

a

aa

c 21
2

1

2
2













mac 12.006.022 
The signal wavelength is obtained as follows:

222

111

cg 


222

111

cg 

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   
8.10044.69347.31

0144.0
1

0319.0
1

12.0
1

1788.0
11

222 


0099.0
8.100

12 

m099.00099.0 

The signal frequency is given by

GHzcf 03.3
099.0
103 8







23. A rectangular waveguide is filled by dielectric material of εr = 9 and has
inside dimensions of 7 X 3.5 cm. It operates in the dominant TE10 mode

(a) Determine the cutoff frequency
(b) Find the phase velocity in the guide at a frequency of 2 GHz.
(c) Find the guided wavelength at the same frequency
Solution:

Width of waveguide(a) = 7 cm = 0.07 m
Height of the waveguide(b) = 3.5 cm = 0.035 m
Dielectric constant or relative permitivity (εr) = 9

(a) The cutoff frequency of dominant mode is given by
2222

2
1

2





























b
n

a
m

b
n

a
mcfc 

22

00

22

00 2
1

2
1






























b
n

a
m

b
n

a
mf

rrrr
c 

228228

035.0
0

07.0
1

912
103

2
103



































b
n

a
mf

rr
c 

GHzfc 714.01014.7 8 
(b) The phase velocity is given by

22

1

1

1 























f
f

f
f

cv
cc

p



2

8

1

103














f
f

v
c

rr

p



smvp /1007.1

102
10714.0191

103 8

2

9

9

8



















(c) The signal frequency (f) = 2 GHz
Signal Wavelength is

m
f
c 15.0

102
103

9

8







The guided wavelemgth is given by
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2

1 











f
fc

g


cmmg 1616.0

102
10714.01

15.0
2

9

9

















24. A TE11 mode of 10 GHz is propagated in an air-filled rectangular
waveguide. The magnetic field in the z-direction is given by

mAyxHH /
6

cos
6

cos0 



















The phase constant is β = 1.0475 rad/cm. The quantities x and y are expressed in
centimeters, and a = b = 6 are also in centimeters. Determine the cutoff
frequency fc, phase velocity vp, guided wavelength λg and the magnetic field
intensity in the y-direction.
Solution:

Mode = TE11, i.e m = 1, n = 1
The signal frequency (f) = 10 GHz

Signal Wavelength is

m
f
c 03.0

1010
103

9

8







mAyxHHH z /
6

cos
6

cos0 



















Phase constant(β) = 1.0475 rad/cm = 104.75 rad/m
Width of waveguide(a) = 6 cm = 2.449 cm = 0.0245 m
Height of the waveguide(b) = 6 cm = 2.449 cm = 0.0245 m

The cutoff frequency is given by
22822

0245.0
1

0245.0
1

2
103

2






























b
n

a
mcfc

GHzfc 658.81058.86 8 
The phase velocity is given by

2

1 











f
f

cv
c

p

smvp /106

1010
10658.81

103 8

2

9

9

8



















The guided wavelemgth is given by

2

1 











f
fc

g

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cmmg 606.0

1010
10658.81

03.0
2

9

9

















The magnetic field intensity in y-direction is given by
zj

y e
b
yn

a
xm

bk
nAjH  













 sincos2

'

zj
y eyx

k
AjH  


















6
sin

6
cos2

'

25. Determine the cutoff wavelength for the dominant mode in a rectangualar
waveguide of breadth 10 cm. For a 2.5 GHz signal propagated in this
waveguide in the dominant mode, calculate the guide wavelength, the
group and phase velocities

Solution:
Breadth of waveguide (a) = 10 cm = 0.1 m
Signal Frequency (f) = 2.5 GHz
Signal Wavelength is given by
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For dominant mode (TE10) the cutoff wavelength is given by
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The guided wavelemgth is given by
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The phase velocity is given by
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The group velocity is given by
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26. The dimensions of guide are 2.5 X 1 cm. The frequency is 8.6 GHz. Find
the following:

(a) Possible modes
(b) Cutoff frequencies
(c) Guide wavelengths
Solution:

Width of waveguide(a) = 2.5 cm = 0.025 m
Height of the waveguide(b) = 1 cm = 0.01 m
Signal Frequency (f) = 8.6 GHz
Signal Wavelength is given by

cmm
f
c 4.3034.0

106.8
103

9

8







The cutoff frequency for TE10 mode is given by
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f > fc , the mode TE10 is possible.
The cutoff frequency for TE01 mode is given by
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f < fc , the mode TE01 not possible.
Simialry, the cutoff frequency for TE11 mode is given by
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f < fc , the mode TE11 is not possible.
Therefore, only one mode is possible. That is TE10

The guided wavelemgth for TE10 is given by
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27. When the dominant mode is propagated in an air-filled rectangular
waveguide, the guide wavelength for a frequency of 9000 MHz is 4 cm.
Calculate the breadth of the guide.

Solution:
Signal Frequency (f) = 9000 MHz
Guide wavelength (λg) = 4 cm = 0.04 m
Signal Wavelength is given by
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The cutoff wavelength is obtained as follows:
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28. A rectangular waveguide has a = 4 cm, b = 3 cm as its cross sectional
dimensions. Find all the modes which will propagate at 5000 MHz

Solution:
Width of waveguide(a) = 4 cm = 0.04 m
Height of the waveguide(b) = 3 cm = 0.03 m
Signal Frequency (f) = 5000 MHz = 5 GHz
Signal Wavelength is given by
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The cutoff frequency for TE10 mode is given by
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f > fc , the mode TE10 is possible.
The cutoff frequency for TE01 mode is given by
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f = fc , the mode TE01 not possible.
Simialry, the cutoff frequency for TE11 mode is given by
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f < fc , the mode TE11 is not possible.
Therefore, only one mode is possible. That is TE10

29. A rectangular waveguide has dimension 2.5 X 5 cm. Determine the guide
wavelength, phase constant and phase velocity at a wavelength of 4.5 cm
for the dominant mode.

Solution:
Width of waveguide(a) = 5 cm = 0.05 m
Height of the waveguide(b) = 2.5 cm = 0.025 m
Signal wavelength (λ) = 4.5 cm = 0.045 m
Signal frequency is given by
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The cutoff frequency for TE10 mode is given by
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The guided wavelemgth for TE10 is given by
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The phase constant is given by
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The phase velocity is given by
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30. A rectangular waveguide with dimensions of 3 X 2 cm operates in the
TM11mode at 10 GHz. Determine the characterisitc wave impedance

Solution:
Width of waveguide(a) = 3 cm = 0.03 m
Height of the waveguide(b) = 2 cm = 0.02 m
Signal frequency (f) = 10 GHz
Signal wavelength is given by

m
f
c 03.0

1010
103

9

8







The cutoff frequency for TM11 mode is given by
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The characterisitc wave impedance is given by
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31. An air-filled waveguide with a cross section 2 X 1 cm transports energy in
the TE10 mode at the rate of 0.5 hp. The impressed frequency is 30 GHz.
What is the peak value of electric field occuring in the guide.

Solution:
Width of waveguide(a) = 2 cm = 0.02 m
Height of the waveguide(b) = 1 cm = 0.01 m
Signal frequency (f) = 30 GHz
Energy (P) = 0.5 hp = 0.5 X 746 = 373 w

The field components of TE mode for dominant mode TE10 are given by
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The equation Ey can be written as
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The cutoff frequency for TE10 mode is given by
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The impedance of TE mode is given by




























 46.389

1030
105.71

377

1
2

9

92
0

f
fc

TE


   01.002.0
46.3894

17465.0
4
1 2

0
2
0  y

TE

y E
ba

E
P



2905371600
01.002.0

46.38947465.02
0 




yE

kwE y 9.535.5390129053716000 

32. A certain microstrip line has the following parameters. εr = 5.23, h = 7
mils, t = 2.8 mils, w = 10 mils. Calculate the characteristic impedance Z0

of the line
Solution:

Relative permitivity (εr) = 5.23
Height of the substrate (h) = 7 mils (1 mil = 1/1000 inch)
Thickness of the strip(t) = 2.8 mils
Width of the strip (w) = 10 mils
The characteristic impedance is given by
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UNIT-4 (PASSIVE MICROWAVE DEVICES, MICROWAVE AMPLIFIERS
AND OSCILLATORS)

Syllabus: Passive Microwave Devices: Introduction to scattering parameters and their
properties, Terminations, Variable short circuit, Attenuators, Phase shifters, Hybrid Tees (H-
plane, E-plane, Magic Tees), Hybrid ring, Directional Couplers – Bethe hole and Two hole
Couplers, Microwave propagation in Ferrites, Microwave devices employing Faraday rotation
– Isolator, Circulator, Deriving Scattering matrix for Microwave passive devices.
Microwave Amplifiers and Oscillators: Microwave Tubes: Linear Beam Tubes – Two
cavity Klystron amplifier -velocity modulation, bunching process, output power, Reflex
Klystron oscillator, power output and efficiency, Travelling Wave Tube (TWT) – Bunching
process and amplification JNTUA B.Tech. R20 Regulations process (Qualitative treatment
only). Crossed Field Tubes – Magnetron oscillator, pi-mode operation, power output and
efficiency, Hartree Condition.

INTRODUCTION TOMICROWAVES
Microwaves are the Electromagnetic waves whose wavelength is in the order of
microns. The typical frequency range of microwaves is from 1 GHz to 300 GHz. As
we know that the wavelength and frequecny are inversily proportional to each other,
the wavelength will be very very small when the frequency is in the order of GHz.
James Clerk Maxwell(1831-1879) predicted the exixtence of electromagnetic waves.
Heinrich Rudolf Hertz(1857-1937) experimentally confirmed Maxwell’s prediction.
Guglielmo Marconi(1874-1937) transmitted information on an experimental basis at
microwave frequencies.
Advantages of Microwaves:
1. Increased Bandwidth
For example,
in 3G, the frequency is 1.6 GHz-2.0 GHz, Bandwidth is 100 MHz
in 4G, the frequency is 2 GHz-8 GHz, Bandwidth is 100 MHz
in 5G, the frequency is 2 GHz-60 GHz, Bandwidth is order of GHz.
2. Improved directivity
3. Fading effect and reliability
4. Power requirements
5. Transparency property of microwaves.
MICROWAVE SPECTRUM AND BANDS

Electromagnetic spectrum is given by
S.No Band designation Frequency range Wavelength

1 VLF 3-30 KHz 100-10 Km
2 LF 30-300 KHz 10-1 Km
3 MF 300-3000 KHz 1-0.1 Km
4 HF 3-30 MHz 100 -10 m
5 VHF 30-300 MHz 10-1 m
6 UHF 300-3000 MHz 100-10 cm
7 SHF 3-30 GHz 10-1 cm
8 EHF 30-300 GHz 10-1 mm
9 Millimeter > 300 GHz < 1 mm

The typical frequency range of microwaves is 1 GHz to 300 GHz. The Microwave
frequency bands and their frequency range is shown in the following table:

S.No Band designation Frequency range Wavelength
1 L-Band 1-2 GHZ 30-15 cm
2 S-Band 2-4 GHz 15-7.5 cm
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3 C-Band 4-8 GHz 7.5-3.8 cm
4 X-Band 8-12 GHz 3.8-2.5 cm
5 Ku-Band 12-18 GHz 2.5-1.7 cm
6 k-Band 18-27 GHz 1.7-1.1 cm
7 Ka-Band 27-40 GHz 1.1-0.75 cm
8 Millimeter 40-300 GHZ 0.75-0.1 cm
9 Submillimeter > 300 GHZ < 0.1 cm

APPLICATIONS OF MICROWAVES
The following is the list of microwave applications:
a) Communication applications:
(i) Telecommunication: Intercontinental Telephone and TV, Space
Communication, Telemetry communication link for railways.
(ii) Radar systems: Detect aircrafts, track/guide supersonic missiles, observe
and track weather patterns, Air Traffic Control(ATC), Burglar alarms, Garage
Door openers, police speed detectors
(iii) Satellite communications
(iv) Terrestrial communications
b) Industrial applications:

i) Microwave Oven
ii) Drying machines-Textile, food and paper industry for drying cloths,

potato chips, printed maters.
iii) Food processing industry-Precooling/cooking, pasteurising/sterlity,

roasting of food grains/beans.
iv) Plastic industry
v) Rubber industry
vi) Chemical industry
vii)Mining/public works, braking rock, tunnel boring, drying/breaking up

concrete, curing of cements.
c) Medical applications: Diathermy for localized superficial heating, deep

electromagnetic heating for tratment of cancer, electromagnetic waves
through the human body will be used for monitoring heart beat, lung water
detection.

d) Agriculture applications:
Microwaves will be used to change the taste of vegetables by reducing the
acidity.

INTRODUCTION TO SCATTERING PARAMETERS AND THEIR
PROPERTIES

Significance, Formulation and Properties of s-matrix:
The ordinary parameters such as Z-parameters, Y-parameters, h-parameters, etc
cannot be used at microwave frequencies because of the following reasons:

(i) The equipment is not readily available to measure the voltage and
current at microwave frequencies.

(ii) Obtaining of open and short circuits at microwave frequencies are
difficult.

(iii) The active devices such as tunnel diodes and power transistors will not
have stability at open and short circuits.

Due to the above reasons, new parameters called S-parameters or simply S-matrix
will be used to analyze the microwave components. S-parameters will be expressed in
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terms of waves instead of voltages and currents. Consider the simple two port network
shown in the following figure.

In above figure a represents the input signals and b represents the reflected or output
signals. The relation between these two parameters can be expressed in terms of s-
parameters as

b1 = S11 a1 + S12 a2

b2 = S21 a1 + S22 a2

In above equation, S11, S12, S21, and S22 represent the reflection coefficients.
In order to form the S-Matrix, consider the following figure. To obtain the
relationship between the scattering matrix and the input/output powers at different
ports, consider a junction of ‘n’ number of transmission lines wherein the ith line ( i
can be any one line from 1 to n) is connected a source as shown in figure.

Let the first line be terminated in an impedance other than the characteristic
impedance (�� ≠ �0 ) and all the remaining lines in an impedance equal to Z0. If ‘ai’
be the incident wave at the junction due to source at the ith line, then it divides itself
among n-1 number of lines as a1, a2, a3,…… an as shown in figure. There will be no
reflections from 2nd to nth line and all incident waves absorbed due to impedance
matching. But there is a reflected signal (b1) from first line due to impedance
mismatch and this reflected is going back into the junction. The reflected signal b1 is
related to a1 by

�1 = ���������� ����������� × �1 = ��1�1
Where Si1 is the reflection coefficient of first line.

ith  line

1st  line

2nd  line

nth  line

ai

bi

a1

a2

an

b1

B2= 0

Bn= 0

ZL ‡ Z0

ZL = Z0

ZL = Z0

Hence the contribution to the outward traveling wave in the ith line is given by
�� = ��1 ∙ �1 [������� �2 = �3 = …. �� = 0

Now let all the n-1 lines are terminated in an impedance not equal to Z0. Then there
will be reflections from all the n-1 lines into the junction and hence total contribution
to the outward wave in the ith line is given by

Two-port network

a1
a2

b1 b2
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�� = ��1 ∙ �1 + ��2 ∙ �2 + ��3 ∙ �3 + … + ��� ∙ ��
The line ‘i' can be any one from 1 to n, then

�1 = �11 ∙ �1 + �12 ∙ �2 + �13 ∙ �3 + … + �1� ∙ ��
�2 = �21 ∙ �1 + �22 ∙ �2 + �23 ∙ �3 + … + �2� ∙ ��
�3 = �31 ∙ �1 + �32 ∙ �2 + �33 ∙ �3 + … + �3� ∙ ��

. . . . . . . . . .
. . . . . . . .

. .
�� = ��1 ∙ �1 + ��2 ∙ �2 + ��3 ∙ �3 + … + ��� ∙ ��

In matrix form,
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
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a
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b

b
b
b

3

2

1

321

3333231

2232221

1131211

3

2

1

Outputs = S-Matrix X Inputs

Properties of S-Matrix:
The properties of S-matrix are

(i) S-Matrix is a square matrix of order n x n
(ii) It is a symmetric matrix. i.e Sij = Sji

(iii) It is a unitary matrix. i.e [S][S]* = [I]
Where [S]* is complex conjugate of [S] and [I] is a Identity matrix of
same order of [S].

(iv) The sum of the products of each term of any row or column multiplied
by the complex conjugate of the corresponding terms of any other row
or column is zero. i.e.

�=1

�

������
∗� = 0 ��� � ≠ �

(v) If any of the terminal or reference plane (say kth port) are moved away
the junction by an electric distance βklk, each of the coefficients Sij

involving k will be multiplied by the factor e-jβklk.
TERMINATIONS (MATCHED LOADS)

Matched loads or matched terminations are used for impedance matching purpose.
That is when the matched loads are connected in the waveguide, there will be no
reflections. There are different types of matched loads are there such as using of
graphite sand in the waveguide as the termination, using of resistive rod at the end of
the waveguide, etc. These two matched loads are shown in the following figures.

Graphited Sand

Energy

Waveguide

Fig: Matched load with graphited sand

Resistive rod

Energy

Waveguide

Fig: Matched load with  resistive rod
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VARIABLE SHORT CIRCUIT
Waveguide short-circuit terminations provide standard reflection at desired, precisely
measurable position. The basic idea behind it is to provide short-circuit by changing
the reactance of the termination. The simplest form of adjustable waveguide short-
circuit is shown in the following figure.

It consists of a sliding block of a good conductor (such as copper) which makes as
snug fit in the waveguide. The position of the block is varied by means of a
micrometer drive.

ATTENUATORS
Resistive card attenuator:
Attenuator will be used to reduce the signal strength. The basic principle involved in
attenuators is absorbing the signal by using the absorbing materials such as carbon
film or aquadog. The structure of resistive card attenuator is shown in the following
figure.

Microwave
power

Waveguide

Resistive card

Fig: Fixed Resistive card attenuator

A resistive card coated with carbon film or aquadog is inserted into the waveguide.
The card is inserted at the center of broader wall of the waveguide. When the signal is
incident on the card, the signal strength will be absorbed. The variable resistive card
attenuator is shown in the following figure.

Resistive card

Locking Screw

Dial Adjusting Knob

Slot

Fig: Variable Resistive card attenuator
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The operation of variable resistive card attenuator can be explained as follows:
When the adjusting knob is rotated in anticlock wise direction, then the resistive card
will be outoff the waveguide. At this position, the attenuation will be minimum. When
the knob is go on rotating in clock wise direction, the resistive card will be go on
inserting into the waveguide and hence the attenuation is go on increases. Once the
knob is fully clock wise direction then the attenuation is maximum.

Rotary vane attenuators
The rotary vane attenuator will be used in all the practical applications. The rotary
vane attenuator is a precession attenuator. The values measured by the rotary vane
attenuator are accurate. The structure of rotary vane attenuator is shown in the
following figure.

θ

Fixed resistive vanes

Rotary Vane

Rectangular
waveguide

Circular 
waveguide

Rectangular
waveguide

E

Fig: Rotary Vane Attenuator

It consists of two rectangular waveguide sections and one rotatable circular
waveguide section. When the signal is applied at the port-1, it will pass through the
first fixed resistive vane without any attenuation. When this signal is passed through
the rotary vane, its E sinθ component will be attenuated and E cosθ component will be
passed to the input of the second fixed resistive card. Again E cosθ sinθ component
will be attenuated by the second fixed resistive card and E cos2θ component will be
available as the output at the second port. Therefore the attenuation equal to 20 log
cos2θ = 40 log cosθ.

PHASE SHIFTERS
Dielectric phase shifter:


 2


, f

v


rr

v
 00

11


A phase shifter is a microwave component which will introduce a certain amount of
phase shift to the input signal. The basic principle involved in phase shifter is,
changing the dielectric medium inside the guide by inserting some dielectric slab.
When the slab is inserted into the waveguide the medium of wave propagation is
varied and hence the phase constant of the signal changes. Due to the change of phase
constant, the phase of the signal will change. The structure of dielectric phase shifter
is shown in the following figure.
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Dielectric slab

Locking Screw

Dial Adjusting Knob

Slot

Fig: Dielectric phase shifter

The operation of dielectric phase shifter can be explained as follows:
When the adjusting knob is rotated in anticlock wise direction, then the dielectric slab
will be outoff the waveguide. At this position, the phase shift will be minimum. When
the knob is go on rotating in clock wise direction, the dielectric slab will be go on
inserting into the waveguide and hence the phase shift is go on increases. Once the
knob is fully clock wise direction then the phase shift is maximum.
Rotary vane phase shifters:
The rotary vane phase shifter is shown in the following figure. It consists of three
dielectric vanes (two are the fixed vanes and one is the rotary vane). It also consists of
two rectangular waveguide sections and one rotatable circular waveguide section.
When the signal is applied to the port one of the device, it will not attenuated by the
first fixed dielectric vane because the direction of E is perpendicular with respect to
the vane. This signal will be appeared as the input at the rotary vane. Now the signal
will be attenuated by the rotary vane because of the rotation. Finally some of the input
signal will be available as the output at the second port.

θ

Fixed dielectric vanes

Rotary Vane

Rectangular
waveguide

Circular 
waveguide

Rectangular
waveguide

E

Fig: Rotary Vane phase shifter
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HYBRID TEES
H-Plane Tee:
H-plane Tee is three port waveguide junction. The structure of H-plane Tee is shown
in the following figure. H-plane Tee is also called as shunt Tee because; the axis of
the side arm is in shunt or in perpendicular with the electric field in the main
waveguide. The main properties of H-plane Tee are given by

(i) When the input is applied at the port-3, it divides between the ports 1 & 2 with
equal amplitudes and same phase.

(ii) When the two collinear ports are supplied with inputs of equal amplitudes and
same phase, the sum of these two inputs available as the output at the port-
3.

(iii)When the two collinear ports are supplied with inputs of equal amplitudes and
opposite phase, the difference of these two input amplitudes (i.e. zero)
available as the output at the port-3.

(iv)In H-plane Tee H-arm is also called as the sum arm.

Port-1

Port-2

Port-3

Collinear ports

Side arm
(H-arm)

Fig: H-Plane Tee

E

Its S-Matrix will be derived as follows:
The general S-matrix for three port device can be written as

� =
�11 �12 �13
�21 �22 �23
�31 �32 �33

−− 1

From the plane symmetry
�23 = �13 - (2)

When the port-3 is perfectly matched to the junction then
�33 = 0 - (3)

Form the symmetry property of s-matrix we can write
�12 = �21, �13 = �31, �23 = �32 - (4)

Substitute equations 2, 3, 4 in equation1

� =
�11 �12 �13
�12 �22 �13
�13 �13 0

- (5)

Form the unitary property of s-matrix we can write
�11 �12 �13
�12 �22 �13
�13 �13 0

�11
∗ �12

∗ �13
∗

�12
∗ �22

∗ �13
∗

�13
∗ �13

∗ 0
=

1 0 0
0 1 0
0 0 1
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11CR �11
2 + �12

2 + �13
2 = 1 - (6)

22CR �12
2 + �22

2 + �13
2 = 1 - (7)

11CR �13
2 + �13

2 = 1 - (8)
From the zero property we can write

13CR �13. �11
∗ + �13. �12

∗ = 0 - (9)
From Equation 8, we can have

12 2
13 S

2
12

13 S

2
1

13 S - (10)

By Comparing equations 6 and 7, we can write
2211 SS  - (11)

From equation 9, we can have
  0*

12
*
1113  SSS

To satisfy the above relation, we can have
0*

12
*
11  SS

1211 SS  - (12)
Substitute equations 10 and 12 in equation 6

1
2

1 2
2

11
2

11 






 SS

1
2
12 2

11 S

2
12 2

11 S

4
12

11 S

2
1

11 S - (13)

Substitute equation 13 in equation 11

2
1

1122  SS - (14)

Substitute equation 13 in equation 12

2
1

1112  SS - (15)

Substitute equations 10, 14 and 15 in equation 5

� = −

1
2

−
1
2

1
2

1
2

1
2

1
2

1
2

1
2

0
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2

1
2

1
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1
2
1

2
1

2
1

2
1

2
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a
a
a

b
b
b

3211 2
1

2
1

2
1 aaab  - (16)

3212 2
1

2
1

2
1 aaab  - (17)

213 2
1

2
1 aab  - (18)

Case-1: Input applied at port-3( 0,0,0 321  aaa )

331 2
1

2
1)0(

2
1)0(

2
1 aab 

332 2
1

2
1)0(

2
1)0(

2
1 aab 

0)0(
2

1)0(
2

1
3 b

Case-2: Input applied at port-1 and port-2 with equal amplitude and same
phase ( 0, 321  aaaa )

0)0(
2

1
2
1

2
1

1  aab

0)0(
2

1
2
1

2
1

2  aab

2
2

2
1

2
1

3
aaab 

Case-3: Input applied at port-1 and port-2 with equal amplitude and
opposite phase ( 0,, 321  aaaaa )

aaab  )0(
2

1
2
1

2
1

1

aaab  )0(
2

1
2
1

2
1

2

0
2

1
2

1
3  aab

E-Plane Tee:
E-plane Tee is three port waveguide junction. The structure of E-plane Tee is shown
in the following figure. E-plane Tee is also called as series Tee because the axis of the
side arm is in parallel or in series with the electric field in the main waveguide. The
main properties of E-plane Tee are given by

(i) When the input is applied at the port-3, it divides between the ports 1
& 2 with equal amplitudes and opposite phase.
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(ii) When the two collinear ports are supplied with inputs of equal
amplitudes and same phase, the difference of these two inputs (i.e. zero)
available as the output at the port-3.

(iii) When the two collinear ports are supplied with inputs of equal
amplitudes and opposite phase, the sum of these two inputs available
as the output at the port-3.

(iv) In E-plane Tee E-arm is also called as the subtractive arm.

Port-1

Port-2

Port-3

Collinear ports

Side arm
(E-arm)

Fig: E-Plane Tee

E

The structure of E-Plane Tee is shown in the figure above. Its S-Matrix will be
derived as follows:
The general S-matrix for three port device can be written as

� =
�11 �12 �13
�21 �22 �23
�31 �32 �33

−− 1

From the plane symmetry
1323 SS  - (2)

When the port-3 is perfectly matched to the junction then
�33 = 0 - (3)
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Form the symmetry property of s-matrix we can write
�12 = �21, �13 = �31, �23 = �32 - (4)

Substitute equations 2, 3, 4 in equation1

 



















01313

132212

131211

SS
SSS
SSS

S - (5)

Form the unitary property of s-matrix we can write




















01313

132212

131211
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









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*
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*
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*
22

*
12

*
13

*
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















100
010
001

11CR �11
2 + �12

2 + �13
2 = 1 - (6)

22CR �12
2 + �22

2 + �13
2 = 1 - (7)

11CR �13
2 + �13

2 = 1 - (8)
From the zero property we can write

13CR 0*
1213

*
1113  SSSS - (9)

From Equation 8, we can have
12 2

13 S

2
12

13 S

2
1

13 S - (10)

By Comparing equations 6 and 7, we can write
2211 SS  - (11)

From equation 9, we can have
  0*

12
*
1113  SSS

To satisfy the above relation, we can have
0*

12
*
11  SS

1211 SS  - (12)
Substitute equations 10 and 12 in equation 6

1
2

1 2
2

11
2

11 






 SS

1
2
12 2

11 S

2
12 2

11 S

4
12

11 S

2
1

11 S - (13)

Substitute equation 13 in equation 11

2
1

1122  SS - (14)
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Substitute equation 13 in equation 12

2
1

1112  SS - (15)

Substitute equations 10, 14 and 15 in equation 5
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3211 2
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2
1 aaab  - (16)

3212 2
1

2
1

2
1 aaab  - (17)

213 2
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2
1 aab  - (18)

Case-1: Input applied at port-3( 0,0,0 321  aaa )
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1)0(

2
1 aab 

332 2
1

2
1)0(

2
1)0(

2
1 aab 

0)0(
2

1)0(
2

1
3 b

Case-2: Input applied at port-1 and port-2 with equal amplitude and same
phase ( 0, 321  aaaa )
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2

1
2
1

2
1

2

0
2

1
2

1
3  aab

Case-3: Input applied at port-1 and port-2 with equal amplitude and
opposite phase ( 0,, 321  aaaaa )
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Magic Tee:
Magic Tee is four port waveguide junction. The structure of magic Tee is shown in
the following figure.

Port-1

Port-2

Port-4

Side arm
(H-arm)

Fig: Magic-Tee

E

Port-3

Side arm
(E-arm)

The magic Tee name arises because; when the input applied at any one of the
collinear ports it will not available at the other collinear port even though they are the
collinear. The magic is a combination of both E-plane Tee and H-plane Tee. The main
properties of H-plane Tee are given by

(i) When the input is applied at the port-3, it divides between the ports 1 & 2 with
equal amplitudes and opposite phase.

(ii) When the input is applied at the port-4, it divides between the ports 1 & 2 with
equal amplitudes and same phase.

(iii)When the two collinear ports are supplied with inputs of equal amplitudes and
same phase, the sum of these two inputs available as the output at the port-
4 and zero output at port-3.

(iv)When the two collinear ports are supplied with inputs of equal amplitudes and
opposite phase, the sum of these two input amplitudes available as the
output at the port-3 and zero output at port-4.

The structure of Magic-Tee is shown in the figure above. Let port-4 is the E-arm and
port-3 is the H-arm. From the properties of s-matrix and by utilizing the plane
symmetry of magic tee we can derive the s-matrix. S-matrix of magic tee is derived as
follows:
The general s-matrix of four port device is given by

[�] =

�11 �12 �13 �14
�21 �22 �23 �24
�31 �32 �33 �34
�41 �42 �43 �44

From the plane symmetry
�23 = �13

�24 = −�14
Ports 3&4 are isolated and hence �34 = �43 = 0
From symmetry property of s-matrix we can write as
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�12 = �21, �13 = �31 , �23 = �32, �34 = �43, �24 = �42, �41 = �14
When the ports 3 and 4 are perfectly matched to the junction, then

04433  SS
By applying all the above properties, we can write the s-matrix as

 























00
00

1414

1313

14132212

14131211

SS
SS

SSSS
SSSS

S - (1)

From the unitary property of s-matrix we can write as



































































1000
0100
0010
0001

00
00

00
00

*
14

*
14

*
13

*
13

*
14

*
13

*
22

*
12

*
14

*
13

*
12

*
11

1414

1313

14132212

14131211

SS
SS

SSSS
SSSS

SS
SS

SSSS
SSSS

�11
2 + �12

2 + �13
2 + �14

2 = 1 -(2)
�12

2 + �22
2 + �13

2 + �14
2 = 1 - (3)

�13
2 + �13

2 = 1 - (4)
�14

2 + �14
2 = 1 - (5)

Also from zero property of s-matrix we can write
�14. �11

∗ − �14�12
∗ = 0 - (6)

From the equation 4, we can have
12 2

13 S

2
1

13 S - (7)

From the equation 5, we can have
12 2

14 S

2
1

14 S - (8)

By comparing equations 2 and 3, we can have
2211 SS  - (9)

From equation 6,
  0*

12
*
1114  SSS

01211  SS

1211 SS  -(10)
Substitute equations 7, 8 and 10 in equation 2

1
2

1
2

1 22
2

11
2

11 













 SS

1
2
1

2
12 2

11 S

112 2
11 S

02 2
11 S

011 S -(11)
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From equations 9, 10 and 11,
0221211  SSS - (12)

Substitute equations 7, 8 and 12 in equation 1

[�] =

0 0
1
2

1
2

0 0
1
2

−
1
2

1
2

1
2

0 0

1
2

−
1
2

0 0






































































4

3

2

1

4

3

2

1

00
2

1
2

1

00
2

1
2

1
2

1
2

100

2
1

2
100

a
a
a
a

b
b
b
b

431 2
1

2
1 aab 

432 2
1

2
1 aab 

213 2
1

2
1 aab 

214 2
1

2
1 aab 

Case-1: When 0,0 4213  aaaa (Input applied at port 3)

3431 2
1

2
1

2
1 aaab 

3432 2
1

2
1

2
1 aaab 

0
2

1
2

1
213  aab

0
2

1
2

1
214  aab

Case-2: When 0,0 3214  aaaa (Input applied at port 4)

4431 2
1

2
1

2
1 aaab 

4432 2
1

2
1

2
1 aaab 

0
2

1
2

1
213  aab
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0
2

1
2

1
214  aab

Case-3: When 0, 4321  aaaaa (Input applied at port 1 and port 2 with equal
amplitudes and same phase)

0
2

1
2

1
431  aab

0
2

1
2

1
432  aab

2
2

2
1

2
1

2
1

2
1

213
aaaaab 

0
2

1
2

1
4  aab

Case-4: When 0,, 4321  aaaaaa (Input applied at port 1 and port 2 with
equal amplitudes and opposite phase)

0
2

1
2

1
431  aab

0
2

1
2

1
432  aab

0
2

1
2

1
2

1
2

1
213  aaaab

2
2

2
1

2
1)(

2
1

2
1

4
aaaaab 

Case-5: When 0,0 4321  aaaa (Input applied at port 1)

0
2

1
2

1
431  aab

0
2

1
2

1
432  aab

1213 2
1

2
1

2
1 aaab 

1214 2
1

2
1

2
1 aaab 

Case-6: When 0,0 4312  aaaa (Input applied at port 2)

0
2

1
2

1
431  aab

0
2

1
2

1
432  aab

2213 2
1

2
1

2
1 aaab 

2214 2
1

2
1

2
1 aaab 

Applications of magic-Tee
Magic-T as duplexer: Magic-T can be used as a duplexer as shown in figure below.
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The transmitter is connected at port-2, receiver is connected at port-1, antenna is
connected at port-3(E-arm) and port-4(H-arm) is terminated with matched load.
During the transmission, the signal generated by the transmitter will act as input at
port of the magic-T and this transmitter power will be splitted and travels towards
port-3 and port-4. The power traveling towards port-3 will be radiated with the
antenna towards the target and power traveling towards port-4 will be absorbed by the
matched load. Similarly, during the reception, the power received by th antenna will
act as input at the port-3. This power will be splitted and travels towards port-1 and
port-2. The power traveling towards port-1 will be received by the receiver of the
radar system.
Measurement of impedance:

Receiver

Transmitter

Antenna

Matched load

Port-1

Port-2

Port-3(E-arm)

Port-4(H-arm)

Fig: Magic-T as duplexer

a3/√2
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The microwave signal generated by microwave source is devided between port 1 and
2 with equal amplitudes and same phase. When the signal a3/√2 is incident at load Z1,
then some of the signal will be rflected back. This reflected power is ( a3/√2)ρ1.
Similarly there is a reflected signal ( a3/√2)ρ2 from the load Z2. These two reflected
powers will act as inputs at the port 1 and port 2 of magic-T. Difference of these two
signals will appear at the input of null detector. The null detector will show the value
which will be equal to difference of two powers ( a3/√2)ρ1 and ( a3/√2)ρ2. We have to
adjust the known impedance Z2 such that the null detector shows zero valus. Zero
value of the null detector indicates that two powers will be equal. That is

2
3

1
3

22
 aa



21  

g

g

g

g

ZZ
ZZ

ZZ
ZZ










2

2

1

1

From the above equation the unknown impedance Z2 can be obtained.

Magic-T as a mixer:

From the above figure, the received signal from the antenna and the signal from local
oscillator will act as inputs at port 3 and port 4 respectively. As per the property of
magic-T, some of these two signals will be traveled towards port-1 where the mixer is
connected. The mixer mixup these two signals and produces corresponding IF signal.

HYBRID RING (RAT-RACE)
A hybrid ring consists of an annular line of proper electrical length to sustain standing
waves, to which four arms are connected at proper intervals by means of series
or parallel junctions.Following figure shows a hybrid ring with series junctions.
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The hybrid ring has characteristics similar to those of the hybrid tee. When a wave is
fed into port 1, it will not appear at port 3 because the difference of phase shifts for
the waves traveling in the clockwise and counterclockwise directions is 180°. Thus
the waves are canceled at port 3. For the same reason, the waves fed into port 2 will
not emerge at port 4 and so on.
The S matrix for an ideal hybrid ring can be expressed as

[�] =

0 �12 0 �14
�21 0 �23 0
0 �32 0 �34
�41 0 �43 0

DIRECTIONAL COUPLERS
A directional coupler is a four port junction made from two waveguides. The basic
principle of directional coupler can be explained with the help of diagram shown in
the following figure.

   Coupling
   Device

Port-1

Port-3 Port-4

Port-2
Primary Waveguide

Secondary Waveguide

Fig: Directional Coupler

It consists of two waveguides called primary waveguide and secondary waveguide.
The directional coupler is a reciprocal device. When the power is applied at the port-1,
it divides between ports-2 & 4. But no power available at the port-3. Similarly when
the power is applied at the port-2, it divides between ports-1 & 3. But, no power
available at the port-4. The important characteristics of directional coupler are

Coupling factor(C) = 10 log (Pi/Pf)
Directivity (D) = 10 log (Pf/Pb)

Where Pi is the input power, Pf is the forward coupled power to the secondary
waveguide and Pb is the back power.
There are different types of directional couplers such as four-hole directional coupler,
two-hole directional coupler, reverse coupling directional coupler(schwinger coupler),
Bethe-hole or single-hole directional coupler.
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The general s-matrix for four port device is given by

[�] =

�11 �12 �13 �14
�21 �22 �23 �24
�31 �32 �33 �34
�41 �42 �43 �44

From the symmetry property of s-matrix we can write
�12 = �21, �13 = �31 , �23 = �32, �34 = �43, �24 = �42, �41 = �14

When all the four ports are perfectly matched to the junction then we can write
�11 = �22 = �33 = �44 = 0

Ports 1 & 3, ports 2 & 4 are isolated ports and hence we can write
�13 = �24 = 0

From the above all properties the s-matrix becomes

[�] =

0 �12 0 �14
�12 0 �23 0
0 �23 0 �34
�14 0 �34 0

- (1)

From the unitary property of s-matrix we can write
0 �12 0 �14
�12 0 �23 0
0 �23 0 �34
�14 0 �34 0

0 �12
∗ 0 �14

∗

�12
∗ 0 �23

∗ 0
0 �23

∗ 0 �34
∗

�14
∗ 0 �34

∗ 0

=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

11CR �12
2 + �14

2 = 1 - (2)
22CR �12

2 + �23
2 = 1 - (3)

33CR �23
2 + �34

2 = 1 - (4)

44CR 12
34

2
14  SS - (5)

From zero property of s-matrix,
31CR �12 . �23

∗ + �14. �34
∗ = 0 - (6)

Comparing equations 2 and 3, we can have
2314 SS  - (7)

Comparing equations 3 and 4, we can have
3412 SS  - (8)

Let us assume S12 is a real and positive (say P), then
�12 = �34 = � = �34

∗

From equation 6, we can have
014

*
23  PSPS

  014
*
23  sSP - (9)

Substitute equation 7 in equation 9
  023

*
23  SSP

0P
Therefore,

0*
2323  SS

In order to satisfy the above equation, S23 must be imaginary term.
Let,

jqS 23

Then
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jqS *
23

Therefore,
PSS  3412 - (10)
jqSS  1423 - (11)

Substitute equations 10 and 11 in equation 1

[�] =

0 � 0 ��
� 0 �� 0
0 �� 0 �
�� 0 � 0

2-Hole type directional coupler
The principle of two-hole directional coupler can be explained with the help of
diagram shown in the following figure.

Port-1

Port-3

Port-2

Port-4

Fig: Two-hole directional coupler

Primary Waveguide

Secondary Waveguide

canceled Added

Two-hole directional coupler contains two holes separated by the spacing given by the
relation

L = 2n + 1
λg

4
Where n = 0,1,2,3,….is an integer and λg is the guide wavelength. When n = 0, then
the spacing between the two holes is λg/4. The waves traveling towards port-4 will
have the same phase and they will be added up. Whereas the waves traveling toward
port-3 will have the opposite (1800) phase and hence they will be canceled.
Bethe-hole type
A single-hole or Bethe-hole directional coupler is shown in the following figure.

Port-1
Port-2

Port-3

Port-4

Matched load

Coaxial probe output

Coupling hole

Fig: Bethe-hole or single hole directional coupler

SJC
ET



It consists of two waveguides called as primary waveguide and secondary waveguide.
The secondary waveguide is connected to the primary waveguide at some angle. Two
waveguides are coupled through the single hole. The directivity of single-hole
directional coupler is high as compared with the two-hole directional coupler because,
coupling takes place through the single hole. The secondary waveguide is rotated such
that maximum electric and magnetic coupling takes place between the two
waveguides. When the signal is applied at the port-1, it available at the port-4 and
port-2.

MICROWAVE PROPAGATION IN FERRITES
Ferrites-composition and characteristics:
Ferrite is an insulator but having magnetic properties. Examples of ferrites are
manganese ferrite, zinc ferrite and associated ferromagnetic oxides such as Yttrium-
Iron-Garnet or YIG in simple form. When electromagnetic waves propagate through
the ferrite, they produce RF magnetic field inside and the direction of this RF field is
at right angle to the direction of wave propagation. If an axial magnetic field from the
permanent magnet is applied to the ferrite, an interaction will takes place within the
ferrite. When only magnetic field is applied to the ferrite, electrons within the ferrite
will align themselves along the lines of magnetic force, just as a magnetized needle
aligns itself with the earth’s magnetic field. The important characteristics of ferrites
are saturation magnetization, Line width and Curie temperature. Saturation
magnetization is defined as the minimum amount of d.c. magnetic field required to
ensure that the axes of the spinning electrons are suitably aligned. Line width is
defined as the range of magnetic field strengths over which absorption will takes
place and is defined between the half power points for absorption. Curie temperature
is defined as the temperature at which the ferrite loses its properties.
Faraday rotation:

Axis of spin

Hdc

Direction 
of spin

HRF

Hdc

Direction 
Of spin

Original spin axis 

New spin axis

Fig: Effect of magnetic fields on spinning electrons. 
        (a) d.c.magnetic field only (b) d.c. and RF magnetic fields

Faraday rotation can be explained with the help of the above figure. Faraday rotation
is defined as the rotation of plane of polarization of waves due to the interaction
between the d.c magnetic field and RF magnetic field. When only d.c. magnetic field
is applied, the electrons will align along the straight line called as spinning axis. But
due to application of both d.c. magnetic field and RF magnetic field, the interaction
will takes place and hence the plane of the wave will rotate. Therefore the phase of
the waves which will propagate through the ferrite will shift by certain amount.
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MICROWAVE DEVICES EMPLOYING FARADAY ROTATION
Gyrator:

E
Port-1

Port-2

900 twist 900

Ferrite

Rectangular 
waveguide

Rectangular 
waveguide

Circular 
waveguide

Fig: Structure of Gyrator

The structure of gyrator is shown in the figure above. It is a two port device. It
introduces a phase shift of 1800 when the signal travels from port-1 to port-2 and
introduces zero phase shifts when the signal travels from the port-2 to port-1. It’s
simple operation can be explained as follows:
The signal traveling from port-1 will undergo a phase shift of 900 by the waveguide
twist in anticlock wise direction and also undergo a phase shift of 900 by the ferrite in
the same direction. Therefore the signal will undergo a total phase shift of 1800 when
it is travels from port-1 to port-2. Similarly the signal traveling from port-2 will
undergo a phase shift of 900 by the ferrite in the anticlock wise direction and also
undergo a phase shift of 900 by the waveguide twist in the clock wise direction.
Therefore the signal will undergo a total phase shift of 00 when it is travels from port-
2 to port-1.
Isolator:
The structure of Isolator is shown in the following figure.

E
Port-1

Port-2

450 twist 450

Ferrite

Rectangular 
waveguide

Rectangular 
waveguide

Circular 
waveguide

Fig: Structure of Isolator

Resistive 
card

Resistive 
card
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It’s simple operation can be explained as follows:
The signal traveling from port-1 will undergo a phase shift of 450 by the waveguide
twist in anticlock wise direction and also undergo a phase shift of 450 by the ferrite in
the opposite direction. Therefore the signal will undergo a total phase shift of 00 when
it is travels from port-1 to port-2. During this traveling, the signal will be
perpendicular to both the resistive cards and hence there will be no absorption of
signal by the resistive cards. Similarly the signal traveling from port-2 will undergo a
phase shift of 450 by the ferrite in the clock wise direction and also undergo a phase
shift of 450 by the waveguide twist in the same direction. Therefore the signal will
undergo a total phase shift of 900 when it is travels from port-2 to port-1. Due to this
phase shift, the signal will be parallel to the resistive card in the port-1, and hence the
signal will be absorbed by this resistive card. Therefore no signal will come out from
port-1.
Isolator is a two port device and hence general s-matrix will be written as

[�] = �11 �12
�21 �22

When the two ports of isolator are perfectly matched, then we can write
�11 = �22 = 0

From the property of isolator we can write

�12 =
�1

�2
= 0 , �21 =

�2

�1
= 1

Therefore the s-matrix of isolator can be written as
[�] = 0 0

1 0
Circulator:

Circulator is a 4 port component in which the power flow takes place from port-1 to
port-2, from port-2 to port-3, port-3 to port-4 and port-4 to port-1 as shown in the
figure above.
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450

450

450

Port-1 Port-2

Port-3

Port-4

Ferrite
Rectangular
waveguide

Rectangular
waveguide

Circular Waveguide

Fig: Four port ferrite circulator

The structure of four port ferrite circulator is shown in the above figure. It consists of
ferrite material and waveguide twists. The ferrite will rotate the signal in clock wise
direction by the amount of 450. When the signal is applied at port-1, it available only
at port-2 as the output. Similarly when the signal is applied at port-2, it will be
available at port-3. When the signal is applied to port-3, it will be available at port-4.
Finally when the signal is applied at port-4, it will be available at port-1.
The general s-matrix for four port device can be written as

[�] =

�11 �12 �13 �14
�21 �22 �23 �24
�31 �32 �33 �34
�41 �42 �43 �44

When all the ports are perfectly matched to the junction, then we can write
�11 = �22 = �33 = �44 = 0

From the property of circulator we can say

�12 =
�1

�2
= 0 , �13 =

�1

�3
= 0 , �14 =

�1

�4
= 1,

�21 =
�2

�1
= 1 , �23 =

�2

�3
= 0 , �24 =

�2

�4
= 0,

�31 =
�3

�1
= 0 , �32 =

�3

�2
= 1 , �34 =

�3

�4
= 0,

�41 =
�4

�1
= 0 , �42 =

�4

�2
= 0 , �43 =

�4

�3
= 1,

Therefore the s-matrix of four port circulator becomes

[�] =

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0
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MICROWAVE TUBES
Microwave tubes-O-type and M-type classifications:

Cavity Slow wave structure

Resonant
Forward wave Backward wave

BWA, BWO
Klystron Helix TWT

Coupled cavity 
TWT

TwystronReflex Klystron

O-Type Tubes(Linear beam tubes)

M-Type tubes(Crossed-field tubes)

Resonant

Standing wave

Reentrant

Magnetron

Nonresonant

Forward wave Backward wave

Reentrant Nonreentrant

FWCFA Dematron

Reentrant Nonreentrant

Amplitron Carcinotron

Maser effect

Gyrotrons

TWO CAVITY KLYSTRON AMPLIFIER
Structure:
The structure of two cavity klystron is shown in figure below. The two cavity klystron
amplifier consists of two cavity resonators, Collector, electron gun, anode. The
cavities are used for tuning purpose such that the gain of the amplifier is improved.
The first cavity is known as buncher cavity which assists in bunching of electron
beam. The second cavity is known as catcher cavity which will catch the bunched
electron beam. The purpose of using anode is to avoid the spreading of electron beam
or it helps in providing the linear electron beam. The electron gun is used to emit the
beam of electrons.
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RF input RF outputL

Anode

Cathode

Electron 
gun

V0 V(t1)

Bunched 
Electron beam

Collector

Vg

V0

t0 t1 t2 t3

Buncher cavity Catcher cavity

0 d L+d L+2d

The performance characteristics of two cavity klystron are given by
(i) Efficiency = 40%
(ii) Power output = 500 KW average power and 30 MW pulsed power
(iii) Power gain = 30 dB
(iv) Frequency = 250 MHz to 100 GHz
(v) Noise figure = 15 to 20 dB

Velocity modulation process and Applegate diagram:
The process of varying the velocity of the electrons with RF signal is known as
velocity modulation. The beam of electrons will be emitted from the cathode. A high
d.c. voltage is applied to the cathode of the electron gun such that the electrons will be
accelerated towards the collector. The anode electrodes are provided such that the
electrons will be further accelerated. The –ve d.c. supply is connected to the electron
gun and anode such that the electrons travel with high velocity. The first
cavity(Buncher cavity) having cavity gap or buncher grids. The buncher cavity is
tuned such that it will be operated at the input RF signal frequency. The input signal
to be amplified should be applied to the buncher cavity. The RF signal is existing
across the buncher cavity gap.
Let the velocity of electrons is V0 before entering the buncher cavity gap. The
electrons will have potential energy and kinetic energy. Therefore,

��0 =
1
2

� �02 − 1
Where ‘e’ is the charge of electron, ‘V0’ is the applied d.c.voltage, ‘m’ is the mass of
electron, ‘v0’ is the velocity of electrons.

2��0 = � �02

�0 =
2��0

� =
2 × 1.6 × 10−19

9.1 × 10−31

�0 = 0.593 × 106 �0 − 2
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The above equation give the velocity of electrons due to applied d.c. voltage V0. The
velocity of the electrons which will enter into the buncher cavity gap will be changes
according to the amplitude of the RF signal. Since the electrons contains a.c.
components also, so the current modulation also takes place in the buncher cavity gap.
Let the input signal is Vs = V1 sinωt. To find out the velocity modulation equation
either in terms of t0 or t1 we need to find the average microwave voltage in the
buncher cavity gap which will be calculated as follows:

The cavity gap transit time is given by

� =
�
�0

= �1 − �0

The transit angle is given by

�� = �� =
��
�0

= � �1 − �0 − 3

The average microwave signal at the buncher cavity gap is given by

�� =
1
� �0

�1

�1 sin �� ��� =
�1

� �0

�1

sin �� ��� =
�1

�
− cos ��

� �0

�1

�� =
�1

��
− cos ��1— cos ��0 =

�1

��
cos ��0 − cos ��1 − 4

From equation 3,
��
�0

= ��1 − ��0

��1 = ��0 +
��
�0

− 5

Substitute equation 5 in equation 4

�� =
�1

��
cos ��0 − cos ��0 +

��
�0

− 6

Let ��0 + ��
2�0

= ��0 + ��

2
= � ��� ��

2�0
= ��

2
= �

Then equation 6 can be written as

�� =
�1

��
cos � − � − cos � + �

But cos � − � − cos � + � = 2 sin � sin �

�� =
�1

��
2 sin � sin � =

�1

��
2 sin ��0 +

��

2 sin
��

2

�� =
2�1

��
sin

��

2
sin ��0 +

��

2 =
�1

��/2
sin

��

2
sin ��0 +

��

2

�� =
�1

��/2
sin

��

2
sin ��0 +

��

2
= �1

sin
��

2
��/2

sin ��0 +
��

2

�� = �1 �� sin ��0 +
��

2 − 7

Where βi is known as coupling coefficient

�� =
sin

��

2
��/2

− 8
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From above equation it can be seen that, if transit angle θg decreases, the coupling
between the electron beam and buncher cavity increases. Where as if θg increases, the
coupling between the cavity and electron beam decreases.

At � = �1, �0 = � �1

� �1 =
2��0

'

�
− 9

Where �0
' = �0 +

������� ����� �� ��������� ������ �� ������ ��� = �0 + ��

�0
' = �0 + �1 �� sin ��0 +

��

2 − 10

Substitute equation 10 in equation 9

� �1 =
2�
�

�0 + �1 �� sin ��0 +
��

2

� �1 =
2��0

�
1 +

�1

�0
�� sin ��0 +

��

2

=
2��0

�
1 +

�1��

�0
sin ��0 +

��

2

Where �1��
�0

is called depth of velocity modulation or modulation index.

� �1 =
2��0

�
1 +

�1��

�0
sin ��0 +

��

2 = �0 1 +
�1��

�0
sin ��0 +

��

2

� �1 = �0 1 +
�1��

�0
sin ��0 +

��

2

1/2

Apply binomial expansion and neglect higher order terms

� �1 = �0 1 +
�1��

2�0
sin ��0 +

��

2 + … − 11

From equation 3,

��0 = ��1 −
��
�0

= ��1 − �� − 12

Substitute equation 12 in equation 11

� �1 = �0 1 +
�1��

2�0
sin ��1 − �� +

��

2

� �1 = �0 1 +
�1��

2�0
sin ��1 −

��

2 − 13

Equations 11 and 13 are called velocity modulation equations in terms of t0 and t1

respectively.
The Applegate diagram of two cavity klystron amplifier is shown in figure below.
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Time

D i
s t

a n
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Buncher gap

Catcher gap

Input gap voltage

Output gap voltage

Fig: Applegate diagram of two cavity klystron

Bunching process:
The bunching process in two cavity klystron can be explained with the help of the
following figure.

tdta tb tc

Slower
Same Fa

ste
r

Di
sta

nc
e

0
Buncher
grid

t

Vs = V1sin ωt

Bunching center

z

ΔL

π/2ω π/2ω

Fig: Bunching process

Once the electrons leave the buncher cavity, they drift with a velocity v(t1) along the
field free space between the two cavities. The effect of velocity modulation produces
bunching of the electron beam. The signal which existing across the buncher cavity
gap is shown in figure. The electrons that passes the buncher cavity at Vs = 0, travel
through unchanged velocity ‘v0’ and become the bunching center. Those electrons
that passes the buncher cavity during the positive half cycle of the microwave input
voltage (Vs) travel faster than the electrons that passed the gap when Vs = 0. Those
electrons that passes the buncher cavity during the negative half cycle of the
microwave input voltage travel slower than the electrons that passed the gap when Vs

= 0. At distance of ΔL along the beam from the buncher cavity, all the three electrons
form as a bunch as shown in above figure.
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The distance from the buncher grid to the location of dense electron bunching for the
electron ‘b’ at ‘tb’ is given by

∆�� = �0 �� − �� − 1
Similarly the distance for the electron ‘a’ at ‘ta’ and electron ‘c’ at ‘tc’ are given by

∆�� = ���� �� − �� = ���� �� − �� +
�

2�
− 2

∆�� = ���� �� − �� = ���� �� − �� −
�

2�
− 3

The velocity modulation equation is given by

� �1 = �0 1 +
�1��

2�0
sin ��1 −

��

2 − 4

���� occurs when ��1 − ��

2
=− �

2
Then equation 4 becomes

� �1 = ���� = �0 1 +
�1��

2�0
sin

−�
2

= �0 1 −
���1

2�0
− 5

���� occurs when ��1 − ��

2
= �

2
Then equation 4 becomes

� �1 = ���� = �0 1 +
�1��

2�0
sin

�
2 = �0 1 +

���1

2�0
− 6

Substitute equation 5 in equation 2

∆�� = �0 1 −
���1

2�0
�� − �� +

�
2�

= �0 −
�0���1

2�0
�� − �� +

�
2�

∆�� = �0 �� − �� +
�0�
2� −

�0���1

2�0
�� − �� +

�
2�

∆�� = �0 �� − �� +
�0�
2�

−
�0���1

2�0
�� − �� −

�0���1

2�0

�
2�

− 7

Similarly substitute equation 6 in equation 3

∆�� = �0 1 +
���1

2�0
�� − �� −

�
2�

∆�� = �0 �� − �� −
�0�
2�

+
�0���1

2�0
�� − �� −

�0���1

2�0

�
2�

− 8

To form a bunch all the three electrons at ta, tb and tc should travel the same distance
ΔL. Therefore equate equations 1 and 7

�0 �� − �� = �0 �� − �� +
�0�
2�

−
�0���1

2�0
�� − �� −

�0���1

2�0

�
2�

0 =
�0�
2�

−
�0���1

2�0
�� − �� −

�0���1

2�0

�
2�

−
�0���1

2�0
�� − �� =

�0���1

2�0

�
2�

−
�0�
2�

−
�0���1

2�0
�� − �� =

�0�
2�

���1

2�0
− 1

�� − �� =−
�

2�
���1

2�0
− 1

2�0

���1
=−

�
2�

���1

2�0
×

2�0

���1
−

2�0

���1
=−

�
2�

1 −
2�0

���1

�� − �� =−
�

2�
+

�
2�

×
2�0

���1
=−

�
2�

+
��0

���1�
When V0 >> V1, then π/2ω can be neglected.
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�� − �� =
��0

���1�
− 7

Substitute equation 7 in equation 1

∆�� = ∆� = �0
��0

���1�
− 8

The time taken for the electron bunches to travel the distance L (Drift space) is known
as transit time (T) and is given by

� = �2 − �1 =
�

� �1
− 9

Substitute equation 4 in equation 9

� =
�

�0 1 +
�1��

2�0
sin ��1 −

��

2

= �0
1

1 + �1��
2�0

sin ��1 −
��

2
Where �0 = �

�0
is called d.c. transit time.

� = �0 1 +
�1��

2�0
sin ��1 −

��

2

−1

Expand by using binomial expansion and neglect higher order terms

� = �0 1 −
�1��

2�0
sin ��1 −

��

2
− 10

�� = ��0 1 −
�1��

2�0
sin ��1 −

��

2 = �0 − � sin ��1 −
��

2 − 11

Where �0 = ��0 = ��
�0

is known as d.c transit angle

� =
�1��

2�0
�0 �� ������ ����ℎ��� ��������� �� � ��������

Small signal theory expressions for o/p power and efficiency:
To derive the equation for the power output and efficiency, let us assume the charge
‘dQ0’ is passing through the buncher cavity gap at a time interval of dt0. Then

� =
��
��

�� = � ��
Or ��0 = �0 ��0

Where I0 is the d.c. current. From the conservation of charge, that is charge neither be
created nor destroyed. The same amount of charge dQ0 will pass through the catcher
cavity gap at a time interval of dt2. Then

��0 = �2 ��2
Where ‘i2‘ is the current in the catcher cavity.

��0 = �0 ��0 = �2 ��2 − 1
We have

� = �2 − �1 =
�

� �1
− 2

But

� �1 = �0 1 +
�1��

2�0
sin ��0 +

��

2 − 3

Substitute equation 3 in equation 2
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� = �2 − �1 =
�

�0 1 +
�1��

2�0
sin ��0 +

��

2

�2 − �1 = �0 1 +
�1��

2�0
sin ��0 +

��

2

−1

Expand by using binomial expansion

�2 − �1 = �0 1 −
�1��

2�0
sin ��0 +

��

2
− 4

�2 = �1 + �0 1 −
�1��

2�0
sin ��0 +

��

2 − 5

We know that � = �1 − �0
�1 = � + �0 − 6

Substitute equation 6 in equation 5

�2 = � + �0 + �0 1 −
�1��

2�0
sin ��0 +

��

2 − 7

Differentiate above equation w.r.t t0

��2

��0
=

��0

��0
+ �0

�
��0

1 −
�1��

2�0
sin ��0 +

��

2
��2

��0
= 1 + �0 0 −

�1��

2�0
cos ��0 +

��

2
∙ �

��2

��0
= 1 −

��0�1��

2�0
cos ��0 +

��

2 = 1 −
��
2�0

���1

�0
cos ��0 +

��

2
��2

��0
= 1 − �0

�1��

2�0
cos ��0 +

��

2 = 1 − � cos ��0 +
��

2

��2 = ��0 1 − � cos ��0 +
��

2 − 8

From equation 1

�2 =
�0 ��0

��2
− 9

Substitute equation 8 in equation 9

�2 =
�0 ��0

��0 1 − � cos ��0 +
��

2

=
�0

1 − � cos ��0 +
��

2

− 10

The above equation gives the current arriving the catcher cavity in terms of t0. The
equation 10 in terms of t2 can be written as
From equation 7

�2 = � + �0 + �0 �� ��0 =−
��

2
��2 = �� + ��0 + ��0 = �� + ��0 + �0

��0 = ��2 − �� − �0 − 11
Substitute equation 11 in equation 10
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�2 =
�0

1 − � cos ��2 − �� − �0 +
��

2

�2 =
�0

1 − � cos ��2 − �0 −
��

2

− 12

The beam current at the catcher cavity is a periodic signal having the period ‘T’.
Therefore, the current i2 can be expanded by using Fourier series

�2 = �0 +
�=1

∞

�� cos ���2 + �� sin ���2 − 13�

�0 =
1

2� −�

�
�2 � ��2� =

1
2� −�

�
�0 � ��0� =

�0

2�
��0 −�

�

= �0 − 14

�� =
1
� −�

�
�2 cos ���2 � ��2�

�� =
1
� −�

�
�2 sin ���2 � ��2�

The above two equations can be solved by suing Bessel functions and are given by
�� = 2�0 �� �X cos ��� + ��0 − 15

�� = 2�0 �� �X sin ��� + ��0 − 16
Where Jn(nX) is the nth order Bessel function.
Substitute equations 14, 15 and 16 in equation 13

�2 = �0 +
�=1

∞

2�0 �� �X cos ��� + ��0 cos ���2�

+ 2�0 �� �X sin ��� + ��0 sin ���2

�2 = �0 +
�=1

∞

2�0 �� �X cos ���2 cos ��� + ��0�

+ sin ���2 sin ��� + ��0

�2 = �0 +
�=1

∞

2�0 �� �X cos ���2 − ��� − ��0�

�2 = �0 +
�=1

∞

2�0 �� �X cos ���2 − ��� − ���0�

�2 = �0 +
�=1

∞

2�0 �� �X cos �� �2 − � − �0� − 17

In above equation the first term ‘I0’ is the d.c. component and the second part is
related to a.c. components. Let us consider only a.c. components.

�2 =
�=1

∞

2�0 �� �X cos �� �2 − � − �0�

The magnitude of fundamental component (when n = 1 ) of the above signal is given
by

�� = �2 = 2�0 �1 X − 18
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This fundamental component has the maximum magnitude at X = 1.841
Output Power: The induced current at the catcher cavity is given by

�2�� = �0�2 − 19
Substitute equation 18 in equation 19

�2�� = �02�0 �1 X = 2�0�0 �1 X − 20

The average output power is given by

���� =
1
2

�2��
2 ��ℎ =

1
2

�2�2�� − 21
Where Rsh is the effective shunt resistance which includes wall resistance of the
catcher cavity, beam loading resistance and external load resistance.
Substitute equation 19 in equation 21

���� =
�0�2

2

2 ��ℎ =
�0�2�2

2
Efficiency: The efficiency of two cavity klystron amplifier is given by

� =
����

���
=

�0�2�2
2

�0�0
=

�0�2�2

2�0�0

REFLEX KLYSTRON OSCILLATOR
Structure:

V0

Vr

Cathode

Anode

Electron beam

RF output

Repeller

L

Fig: Structure of reflex klystron oscillator

The structure of reflex klystron oscillator is shown in above figure. It consists of
cathode, Reentrant cavity, Repeller. The purpose of cathode is to emit the beam of
electrons. A high d.c.voltage (V0) is applied to the cathode. The cavity is used to
velocity modulate the electrons. The repeller is used to repel the electrons. The
repeller is supplied with high d.c. voltage known as repeller voltage(Vr). The two
cavity klystron amplifier can be used as a oscillator by giving feedback such that
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bharkhauson criteria is satisfied. But the problem arises with two cavity klystron is
when we want to operate the oscillator at some other frequency, we need to adjust
t(tune) both the cavities. In order to avoid this problem a single cavity klystron known
as reflex klystron is used.
Velocity modulation and Applegate diagram:
The basic principle in reflex klystron is by giving less energy to the electrons, more
energy will be gained with the help of velocity modulation. Initially due to noise or
transients, small oscillations will be exist within the cavity and this oscillations will be
sustained by the energy of electron bunches. The function of repeller is it reflects or
repels the electrons which are coming towards it. The velocity modulation process of
reflex klystron oscillator can be explained with the help of Applegate diagram shown
in figure below. In figure, the oscillations due to noise or transient also had shown
which exist across the cavity gap. The electron beam is emitted from the electron gun
and is accelerated with the help of high d.c. voltage (V0). The electron beam is
velocity modulated when it enters the cavity gap. As shown in figure, let the electron
‘A’ entering the cavity gap when the signal is at +ve maximum. The velocity of
electron ‘A’ is increased since it would be accelerated by the +ve half cycle. This
electron travels more distance in the repeller space and repelled by the repeller and
finally travels towards the cavity. Similarly let us assume the electron ‘B’ enters the
cavity gap when the gap voltage is zero. Then the velocity of the electron ‘B’ is not
changed and travels the lesser distance in the repeller space as compared with the
electron ‘A’ and repel by the repeller.

A B C t

Di
st

an
ce

 fr
om

 ca
vi

ty
 ga

p

¾ cycle

1 ¾ cycle
Returned electron beam
Is retarded during this
Half cycle

Electron beam is 
accelerated
During this half cycle

Electron beam is 
decelerated During
 this half cycle

t

Bunch

Third electron ‘C’ is enter the cavity gap later than the electron’B’ when the gap
voltage is at –ve maximum and its velocity will be decelerated. The electron ‘C’ will
travels less distance in the repeller space as compared with electron ‘B’ since it is
having less velocity compared to ‘B’ and will be repelled by the repeller. The time
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taken by the electrons to travel the distance towards repeller and returned to the cavity
gap is called round trip transit time. Since the three electrons A,B & C enters the
cavity gap with difference in time and the electrons are travelling different distances,
as a result, all the three electrons forms as a bunch while traveling to the cavity.

Normally the electrons gains energy when those are accelerated by the voltage
and loose energy when they are retarded or slowed down by the voltage(-ve).
Therefore to gain more energy from the electron bunches, the electron bunch should
returned to the cavity when the gap voltage is at retarding phase(+ve maximum).
Therefore, the electron bunches will be retarded and give up their kinetic energy to
the –ve half cycle(Since electrons are retarded by the +ve half cycle). Therefore, as
shown in Applegate diagram the first +ve peak occurs (after reference electron ‘B’
since around it electron bunch takes place) after ¾ cycle. So we have to adjust the
repeller voltage such that the electron bunches returned to the cavity when the cavity
gap voltage is at first ¾ cycle. Therefore first mode occurs at first ¾ cycle. By varying
the repeller voltage, the electron bunches will return to the cavity gap after 1 ¾ cycle,
2 ¾ cycle and so on. Therefore, different modes of operation of a reflex klystron is
possible which is given as

� = � + 3/4
Where ‘N’ is the mode of operation and ‘n’ is the integer varies from 0 to infinity.
First mode occurs when n = 0, 2nd mode occurs when n = 1, and so on. The velocity
modulation equation of reflex klystron is similar to two cavity klystron and is given
by

� �1 = �0 1 +
�1��

2�0
sin ��1 −

��

2
Mathematical theory of bunching:
The analysis of reflex klystron is similar to two cavity klystron. The electron enters
the cavity gap with a velocity of �0 = 0.593 × 106 �0 at z = t0 and the electron
leave the cavity gap at z = t1 with a velocity of

� �1 = �0 1 +
�1��

2�0
sin ��1 −

��

2
− 1

The same electron will be returned to the cavity gap at z = t2 by the retarding electric
field which is given by

� =
�
�

=
�� + �0 + �1 sin ��

�
− 2

The force due to this electric field on the electron is given by
� =− �� − 3

Substitute equation 2 in equation 3

� =− �
�� + �0 + �1 sin ��

�
≅− �

�� + �0

�
− 4

Since �1 sin �� ≪ �� + �0
We know that,

� = �� = �
�2�
��2 − 5

Equate equations 4 and 5

�
�2�
��2 =− �

�� + �0

�
�2�
��2 =−

�
�

�� + �0

�
Integrate above equation with respect to t
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��
��

=−
� �� + �0

�� �1

�
��� =−

� �� + �0

��
� − �1 + �1 − 6

At � = �1, ��
��

= � �1

Apply above condition to the equation 6

� �1 =−
� �� + �0

��
�1 − �1 + �1

� �1 = 0 + �1
�1 = � �1 − 7

Substitute equation 7 in equation 6
��
��

=−
� �� + �0

��
� − �1 + � �1 − 8

Integrate above equation with respect to t

� =−
� �� + �0

�� �1

�
� − �1 ��� +

�1

�
� �1 ���

� =−
� �� + �0

�� �1

�
� − �1 ��� + � �1

�1

�
���

� =−
� �� + �0

2��
� − �1

2 + � �1 � − �1 + �2 − 9
At � = �1, � = �

Apply above condition to the equation 9

� =−
� �� + �0

2��
�1 − �1

2 + � �1 �1 − �1 + �2 = 0 + 0 + �2

�2 = � − 10
Substitute equation 10 in equation 9

� =−
� �� + �0

2��
� − �1

2 + � �1 � − �1 + � − 11
The electrons are leaving the cavity (z = d) with time t1 and returning to the cavity (z
= d) at t = t2. Therefore, �� � = �2, � = �
Apply above condition to equation 11

� =−
� �� + �0

2��
�2 − �1

2 + � �1 �2 − �1 + �

� − � =−
� �� + �0

��
�2 − �1

2 + � �1 �2 − �1

0 =−
� �� + �0

2��
�2 − �1

2 + � �1 �2 − �1

� �� + �0

2��
�2 − �1

2 = � �1 �2 − �1

� �� + �0

2��
�2 − �1 = � �1

�' = �2 − �1 =
� �1 2��
� �� + �0

− 12

Where T’ is known as round trip transit time
Substitute equation 1 in equation 12

SJC
ET



�' = �2 − �1 =
�0 1 +

�1��

2�0
sin ��1 −

��

2 2��

� �� + �0

=
2���0

� �� + �0
1 +

�1��

2�0
sin ��1 −

��

2

�2 − �1 = �0
' 1 +

�1��

2�0
sin ��1 −

��

2 − 13

Where �0
' = 2���0

� ��+�0
is known as round trip d.c. transit time. Multiply equation 13

with ω on both sides

� �2 − �1 = ��0
' 1 +

�1��

2�0
sin ��1 −

��

2

� �2 − �1 = �0
' 1 +

�1��

2�0
sin ��1 −

��

2
Where �0

' = ��0
' is known as round trip d.c. transit angle.

� �2 − �1 = �0
' + �0

' �1��

2�0
sin ��1 −

��

2

= �0
' + �' sin ��1 −

��

2 − 14

Where �' = �1��
2�0

�0
' is known as bunching parameter of reflex klystron oscillator.

Power output and efficiency:
For transferring of maximum energy the round trip transit angle, referring to the
center of the bunch must be given by

� �2 − �1 = ��0
' = � − 1/4 = 2�� = 2�� − �/2

Where � = � − 1/4, ‘n’ is any positive integer for cycle number. ‘N’ is the mode
numbers (no.of modes).
The induced current in the cavity of reflex klystron can be derived similar to the two
cavity klystron and is given by

�2 = −�0 −
�=1

∞

2�0 �� �X' cos � ��2 − �� − ��0
'�

�2 = −�0 −
�=1

∞

2�0 �� �X' cos � ��2 − �� − �0
'�

In above equation –ve sign indicates that the current induced after reflection by the
repeller. The fundamental component of a.c. current is given by

�2 = 2�0 �1 X' cos ��2 − �� − �0
'

The magnitude of induced current in the cavity is given by
�2 = ���2 = 2�0�� �1 X'

The average value of the power delivered to the load is given by

��� =
�1�2

2
=

2�0�� �1 X' �1

2
= �1�0�� �1 X' − 1

We know that,

�' =
�1��

2�0
�0

' − 2

�0
' = ��0

' = 2�� −
�
2

− 3
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Substitute equation 3 in equation 2

�' =
�1��

2�0
2�� −

�
2

�1 =
2�'�0

�� 2�� −
�
2

− 4

Substitute equation 4 in equation 1

��� =
2�'�0

�� 2�� −
�
2

�0�� �1 X' =
2�0�0�' �1 X'

2�� − �
2

− 5

The above equation is known as output power of a reflex klystron oscillator.
The efficiency of the reflex klystron oscillator is given by

� =
���

���
=

2�0�0�' �1 X'

2�� − �
2

�0�0
=

2�' �1 X'

2�� − �
2

− 6

In practice the mode of n = 2 has the most power output. The factor �' �1 X' reaches
a maximum when X = 2.408. Then the efficiency for mode 2 is given by

� =
2�' �1 X'

2�� − �
2

=
2 2.408 �1 2.408

2 2 � − �/2
=

2 2.408 0.52
2 2 � − �/2

× 100 = 22.7%

Oscillating modes and o/p characteristics:
The following graph represents the mode characteristics of reflex klystron oscillator.
From the figure we can observe that, the output power is maximum for 1 ¾ mode.
The power output is approximately 400 mW for 1 ¾ mode. The output power is less
for 2 ¾ mode and 3 ¾ mode as compared with 1 ¾ mode. Therefore the reflex
klystron oscillator should be operated at 1 ¾ mode to get high power output.
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Fig: Power output and frequency characteristics of a reflex klystron
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TRAVELLINGWAVE TUBE (TWT)
Significance, types and characteristics of slow wave structure:
As the operating frequency is increased, both the inductance and capacitance of the
resonant circuit must be decreased in order to maintain resonance at the operating
frequency. Because the gain bandwidth product is limited by the resonant circuit, the
resonator cannot generate a large output.

(a)
(b)

(c) (d)

(e)

Fig: Slow-wave structures. (a) Helical line    (b) Folded-back line    (c) Zigzag line
        (d)  Interdigital line     (e) Corrugated waveguide

Several nonresonant periodic circuits or slow-wave structures are designed for
producing large gain over a wide bandwidth. Various types of slow-wave structures
are shown in figure above. Slow-wave structures are special circuits that are used in
microwave tubes to reduce the wave velocity in a certain direction so that the electron
beam and the signal wave can interact. The commonly used slow-wave structure is a
helical line. So let us discuss about the helical line. In the helical line structure RF
field or EM waves travels along the turns of the helix with a speed equal to velocity of
light(c).

d

P
P

C= πD
ψ

Let ‘τ’ be the time taken by the RF field to travel along one turn of the helix and is
given by

� =
�2 + �2

�
=

�2 + �� 2

� − 1
Where ‘d’ is the diameter of the helix, ‘C’ is the circumference of helix, ‘c’ is the
velocity of light and ‘P’ is the helix pitch which is defined as the distance traveled by
the wave along the helix axis. Let τ’ be the time required by the axial electric field to
travel the distance of ‘P’ and is given as
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�' =
�
��

− 2

Where vp is the phase velocity of the axial electric field. The time taken by the RF
field and axial electric field must be same, why because, these two waves traveling
different distances with different velocities.
Therefore equate equations 1 and 2

�2 + �� 2

�
=

�
��

�� =
� ∙ �

�2 + �� 2

When � ≪ �� , then P can be neglected

�� =
� ∙ �

�� 2
=

� ∙ �
��

Therefore the velocity of axial electric field is the product of velocity of light(c) and
the ratio of pitch to circumference (P/πd).

�� =
�
�

=
� ∙ �
��

− 3

The following figure shows the ω-β diagram or Brillouin diagram for helical slow-
wave structure. The helix ω-β diagram is very useful in designing a helical slow-
wave structure. Once β(phase constant) is known then the phase velocity (vp) can be
computed from the equation for a given dimension of the helix.

ω

β

ω/β = c

Fig: ω-β diagram for helical structure

Structure of TWT, Bunching process and amplification process:
The schematic structure of Traveling Wave Tube is shown in figure below. The
simplified structure or circuit of helix TWT is shown in figure below. Kompfner
invented the helix TWT in 1944. Before starting to describe the TWT, it seems
appropriate to compare the basic operating principle of both TWT and klystron
amplifier. In case of TWT the microwave circuit is a nonresonant and the wave
travels with the same speed as the electrons in the beam. The initial effect on the
beam is small amount of velocity modulation caused by the weak electric fields
associated with the traveling wave and this velocity modulation later translates to
current modulation, which then induces RF current in the circuit, causing
amplification. However, there are some major differences between the TWT and
klystron which are
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(i) The interaction of electron beam and RF field in the TWT is continuous over
the entire length of the circuit, but the interaction in the klystron occurs
only at the gaps of a resonant cavities.

(ii) The wave in the TWT is a propagating wave, where as in klystron it not
propagating wave.

In the coupled cavity TWT there is a coupling effect between cavities, where as in
klystron each cavity operates independently.

Heater
supply

Gain or modulation
Control voltage

Regulated 
beam supply

Collector
 supply

Control anode

Cathode
Heater Collector

RF input RF output

Helix Electron
 beam

Electron beam
Focusing magnet

Attenuator

Helix current
Overload relay

Fig: Schematic diagram of helix traveling wave tube

A helix TWT consists of electron beam and slow-wave structure. The electron beam
is focused by a constant magnetic field along the electron beam and slow-wave
structure. The slow-wave structure is either the helical type or folded-back line. The
TWT has an electron gun to produce a narrow electron beam which in turn passed
through the centre of the long axial helix. A magnetic focusing is provided to prevent
the beam from spreading and to guide it through the centre of the helix. A signal to be
amplified is applied to the one end of the helix adjacent to the electron gun. The
amplified signal appears at the output or other end of the helix.

RF input RF output

Collector
Magnetic focusing structure

Slow-wave structure
Anode

Cathode

Heater

Fig: Simplified circuit of helix TWT
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Electron beam

Retarding force

Accelerating force

Retarding field

Electric
field

Fig: interaction between electron beam and electric filed

The basic principle can be explained as follows: The RF signal (input)
propagating around the turns of the helix produces an electric field at the centre of the
helix, which is called axial electric field. The RF signal is propagating along the helix
with a velocity equal to velocity of light, where as the axial electric field travels with
velocity which equal to the velocity of light multiplied with the ratio of helix pitch to
helix circumference. The purpose of helix is to reduce the velocity of axial electric
field such that the interaction will takes place between electron beam and axial
electric field. The interaction is such that on an average the electron delivers energy to
the wave on the helix. As a result, the signal wave grows and amplified output is
obtained. The mechanism by which the electrons transfer energy to the RF input can
be explained with the help of following figure.

As shown in above figure, the electrons which are entering the retarding field(+ve
half cycle of input or RF signal) are decelerated because the force applied by that field
is opposite to the motion of electrons(F = -QE). Similarly the electrons which are
entering the RF field during its accelerating field(-ve half cycle) are accelerated by the
accelerating force. The velocity of the electrons which are entering during the zero
point of the input signal is not changed. Therefore due to above mechanism velocity
modulation takes place and electrons form as a bunch. This electron bunch delivers
energy to the input signal. Since the velocity of electrons is slightly greater than the
axial wave velocity, more electrons are in the retarding field than in accelerating field
and a great amount of energy is transferred to the electromagnetic field from the
electron bunches because when electrons are slowed down they deliver the energy.
Whereas accelerating electrons extracts the energy from the RF field. The bunch
continuous to become more compact and large amplification of the signal voltage
occurs at the end of helix. The attenuator is placed at the center of the helix to reduce
all the waves which are traveling along the helix from load, so that the reflected
waves from the mismatched load can be prevented from reaching the input and
causing oscillations.

CROSSED FIELD TUBES
Cross field effects:
Crossed-field tubes derive their name from the fact that the dc electric field and the dc
magnetic field are perpendicular to each other. They are also called M-type tubes. In
crossed-filed tubes, the electrons emitted by the cathode are accelerated by the electric
field and gain velocity, but the greater the velocity, the more their path is bent by the
magnetic field. If an RF field is applied to the anode circuit, those electrons entering
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the circuit during the retarding filed are decelerated and give up some of their energy
to the RF field. Consequently, their velocity is decreased, and these slower electrons
will then travel the dc electric field far enough to regain essentially the same velocity
as before. Because of the crossed-field interactions, only those electrons that have
given up sufficient energy to the RF field can travel all the way to the anode.

MAGNETRON OSCILLATOR
Different types
Basically there are three types of magnetrons such as

(i) Split anode magnetron
(ii) Cyclotron frequency magnetron
(iii)Traveling wave magnetron

Commonly, traveling wave magnetron is preferable as compared with other two. In
traveling wave magnetron there are different types and are given by

(i) Cylindrical magnetron
(ii) Linear or planar magnetron
(iii)Coaxial magnetron
(iv)Voltage tunable magnetron
(v) Inverted coaxial magnetron
(vi)Frequency-agile magnetron

Cylindrical traveling wave magnetron
The schematic diagram of a cylindrical magnetron is shown in figure 1 below. This
type of magnetron is also called as conventional magnetron.
Constructional features: The cavity magnetron or traveling wave magnetron has
cylindrical construction employing a radial electric field (Er) and axial magnetic field
(B0) and anode structure with permanent cavities. Figure 2, shows the cross sectional
view of the magnetron. Here cylindrical cathode is surrounded by the anode with
cavities and thus radial d.c. electric field will exist. With the help of some permanent
magnet, a magnetic field will be applied to the magnetron such that magnetic lines of
force are at right angles to the plane of the radial electric field. Since the magnetic
field is perpendicular to the radial electric field, the magnetron also called as crossed-
field device.

V0

B0

Er

RF output
CathodeEnd hat

Anode

Fig(1): Schematic diagram of a cylindrical magnetron
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Output

Anode cavityCathode

Anode

Fig(2): Simplified diagram of magnetron

The output of the magnetron oscillator is taken from one of the cavities by means of a
coaxial line as shown in figure 2. The material used for cathode is copper. There are
number of resonant cavities in magnetron and each cavity having its resonant
frequency. Therefore magnetron
having many number of modes of operation which are equal to number of cavities.
For example if a magnetron having 8 cavities, then it has 8 modes of operation. The
phase difference of the waves which are existing between the adjacent cavities must
be chosen such that total phase difference of all the anode cavities must be 3600. For
example if magnetron having 8 cavities, the phase difference between the adjacent
cavities must be 450.
pi-mode operation:
When magnetic and electric fields acts simultaneously upon the electron, its path can
have any number of shapes depends upon their relative strength of the mutually
perpendicular electric and magnetic fields. Some of these electron paths are shown in
figure 3.

x

y

z

Fig(3): Electron paths in magnetron

Cathode

The d.c voltage (V0) is applied to the cathode of the magnetron with respect to the
anode. Due to this d.c voltage electric field will be existing between the anode and
cathode. The direction of electric field is from anode to cathode. This electric field is
in the direction of radius of cylindrical magnetron and hence the electric field is
known as radial eclectic field. The electrons will be emitted or generated at the
cathode and travels towards the anode under the influence of force exerted by the
electric field. When the magnetic field is zero, the electron goes straight away from
the cathode to anode. This is indicated as path ‘x’ as shown in figure 3. When the
magnetic field is small, but definite strength, it will exert as a lateral force on the
electron, as a result the electrons takes a bending path which is shown as path ‘y’ in
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figure 3. As the electron approaches the anode, its velocity continuous to increase
radially as it is accelerating. Therefore, the effect of magnetic field upon electron
increases so that the path curvature becomes sharper as the electron approaches the
anode.

It is possible to make the magnetic field so strong the electrons will not reach
the anode at all. The magnetic field required to return the electrons to the cathode
after they have just grazed the anode is called cutoff field. The resulting path ‘z’ is
shown in figure 3. The electric field (RF field) distribution in π-mode (PI-mode)
cavity magnetron is shown in figure 4 below.

a

b

RF Electric field

1

8

7
6

5

4

3

2

Fig(4): Field distribution in PI-mode magnetron

The phase difference between the adjacent cavities is 1800. Since the cavities are
resonant in nature, RF oscillations are present due to noise or transient. These small
RF oscillations will be sustained by the taking the energy from the electrons. We have
to choose the axial magnetic field and radial electric field such that the more number
of electrons should reach the cavity gap voltage(RF voltage) at a proper time interval.
Then all the electrons give up their energy to the RF electric field. As shown in figure
4, the electron ‘a’ is enters the RF electric field in the cavity. The phase of the signal
(RF Signal) in the cavity is such that the electron may accelerated or decelerated
(retarded) depending upon the accelerating force or retarding force by the RF
oscillations. If the electron ‘a’ is slowed down by the cavity gap voltage, then that
electron gives its energy to the RF oscillations. Once electron slowed down, it will
take different path as shown by the electron ‘a’ in figure 4.

In a magnetron a self consistent oscillations can exist only if the phase
difference (φ) between the adjoining anode poles is nπ/4, where ‘n’ is integer. For
best results n = 4 is used in practice. The resulting π-mode (if n = 4, φ = π)
oscillations are shown in figure 4. In the absence of RF electric field electrons ‘a’ and
‘b’ would have followed the paths shown by the dotted line a & b respectively, but RF
field naturally modifies these paths. The RF oscillations also exist inside the cavity
resonators. Due to the application of d.c voltage to the cathode of the magnetron, the
electrons tries to travel straight away toward the anode but due to the application of
axial magnetic field the electrons will take a bending paths as shown in figure 4. The
electron ‘a’ enter in the cavity gap RF oscillations. The direction of the motion of the
electron ‘a’ is in the same direction of the RF electric field of 1st cavity and hence the
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electron ‘a’ will be slowed down by the electric field because the electric field
produces opposing force on electrons. Therefore the electron ‘a’ give up energy to the
RF oscillations. But the electron ‘b’ is entering the RF electric field of cavity 2 as
shown in figure 4. The electron ‘b’ will be accelerated by the RF electric field and
gains energy from the RF electric field instead of giving the energy. So we must
choose the magnetic field and radial electric field such that large number of electrons
should give their energy to the RF oscillations. Due to effect of RF electric field on
the electron, bunching will takes place because of each cavity having opposite phase
with respect to adjacent cavity. Instead of individual electrons, bunch of electrons
traveling towards the anode cavities and give their large amount of energy to the RF
oscillations.
Power output and efficiency:
The output characteristics of magnetron will be studied by means of Rieke diagram
shown in figure below.

0 10 20 30 40 50 60 70 80

10

15

20

25

30

Anode current (A)

An
od

e 
vo

lta
ge

 (K
V)

200

300

400

500

50%55%60%

Efficiency

Power

Electric field

Fig: Rieke diagram

The Rieke diagram is nothing but a chart or graph which is used to design or study the
performance characteristics of a magnetron. The Rieke diagram represented in terms
of anode voltage and anode current. With the help of Rieke diagram we can find the
power, electric field and efficiency by knowing the anode voltage and anode current.
Hartree Condition:
In order to understand the Hull cutoff condition and Hartree resonance condition, let
us derive the equation for magnetic field and voltage from the following figure.

φ

E H
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Let ‘a’ be the radius of cathode, ‘b’ be the radius of anode and ‘ϕ’ be the angular
displacement of the electron bends. Force acting on the electron due to magnetic field
is given by

� = ��� − 1
Where ‘B’ is the magnetic flux density, ‘e’ is the charge of electron and ‘v’ is the
velocity of electron. In the direction of ϕ the force is given by

�� = ���� − 2
Where ‘ρ’ is the radial distance from the cathode, ‘vρ’ is the velocity of electrons in
the direction of radial distance (ρ). The torque in ϕ direction is given by

�� = ��� − 3
Substitute equation 2 in equation 3

�� = ����� − 4
Angular momentum is equal to the multiplication of angular velocity and moment of
inertia. i.e.

������� �������� =
��
��

× ��2

Since ϕ is the angular displacement, the rate of change of angular displacement is
nothing but angular velocity. In equation 4 ‘m’ is the mass of electron. The time rate
of change of angular momentum is nothing but a torque. i.e

� =
�
��

��
��

× ��2 − 5
Equate equations 4 and 5

����� =
�
��

��
��

× ��2 = 2��
��
��

+ ��2 �2�
��2

Take integration on both sides with respect to ‘t’,
Then ������ = 2�� ��

��
� + ��2 �2�

��2�

�� ���. �� =� 2��
��
��

� . �� + ��2 �2�
��2� . ��

But �� = ��
��

�� �
��
��

. �� =� 2��
��
��

� . �� + ��2 �2�
��2� . ��

�� � �� =� 2�� ��� + ��2 �2�
��

�

��
�2

2
= 2��� + ��2 ��

��
− 6

For particular direction the parameters ϕ, mρϕ, can be thought of constant and let it be
‘c’, then equation 6 becomes

��
�2

2
= ��2 ��

��
+ � − 7

From figure, at � = �, ��
��

= 0 , then apply this condition to equation 7

��
�2

2 = 0 + �

� = ��
�2

2
− 8

Substitute equation 8 in equation 7

��
�2

2
= ��2 ��

��
+ ��

�2

2
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��2 ��
��

= ��
�2

2
− ��

�2

2
=

��
2

�2 − �2

��
��

=
��

2��2 �2 − �2 =
��
2�

1 −
�2

�2 − 9

From above equation, when ρ = a, then ��
��

= 0 that is angular velocity is equal to zero

and when � ≫ �, then ��
��

will be maximum. That is
��
�� ���

= ���� =
��
2�

− 10

In above equation �2

�2 is neglected, because ρ2 is large as compared with a2.
We know that,

��0 =
1
2

��2 =
1
2

� ��2 + ��2 − 11
Where �� ��� �� are the components of ‘v’ in ‘ρ’ and’ ϕ’ directions respectively. V0

is the applied d.c voltage to the cathode. But

�� =
��
��

��� �� = �
��
��

− 12
Substitute equation 12 in equation 11

��0 =
1
2

�
��
��

2

+ �
��
��

2

− 13

From equations 9 and 10 we have
��
��

= ���� 1 −
�2

�2 − 14

Substitute equation 14 in equation 13

��0 =
1
2 �

��
��

2

+ ����� 1 −
�2

�2

2

− 15

At � = �, ��
��

= 0, �ℎ�� equation 15 becomes

��0 =
1
2 � 0 2 + ����� 1 −

�2

�2

2

=
1
2

��2����2 1 −
�2

�2

2

− 16

Substitute equation 10 in equation 16

��0 =
1
2

��2 ��
2�

2

1 −
�2

�2

2

=
�2�2�2

8�
1 −

�2

�2

2

− 17

����� �2 ≫ �2, �ℎ��
�2

�2 ��� �� ���������

��0 =
�2�2�2

8�
− 18

� = �� =
8�0�
��2 =

1
�

8�0�
� − 19

The above equation is known as hull cutoff magnetic equation. That is hull cutoff
magnetic field is defined as the magnetic field above which the electrons will not
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reach the anode. Therefore when the magnetic field is greater than Bc, then the
electrons will return to the cathode and this returned electrons will produce a back
heating. From equation 17, the equation for Bc can also expressed as

�� =
8�0�/�

� 1 −
�2

�2

− 20

Again from equation 17, we can have

�0 = �0� =
�2�2�2

8��
1 −

�2

�2

2

=
�2��2

8�
1 −

�2

�2

2

− 21

The equation 21 is known as hull cutoff voltage equation. That is the hull cutoff
voltage is defined as the voltage below which the electrons will not reach the anode.
The Hull cutoff condition determines the anode voltage or magnetic field necessary to
obtain the non-zero anode current as a function of the magnetic field or anode voltage
in the absence of the Electromagnetic field. The hartree anode voltage is given by

��ℎ =
��0�

�
−

�2

�2
�
2�

Where ‘ω’ is the angular frequency, B0 is the magnetic field, ‘d’ is the spacing
between the cathode and anode, ‘β’ is the phase constant, ‘m’ is the mass of the
electron and ‘e’ is the charge of electron.
Mode jumping in Magnetron:
The number of resonant frequencies of a magnetron oscillator depends upon the
number of cavities in the magnetron. For example, if magnetron having 8 cavities,
then there are 8 possible modes of operation. In case of normal magnetron the
wavelength of different modes differ very slightly from adjacent modes. Due to this
small difference in frequency of one mode with adjacent mode, there is a possibility
of mode jumping. That means when the magnetron is operating in one mode, it may
enter into the other node which is adjacent to the operating mode. For example, let N
= 8 cavities, then the phase difference between the adjacent cavities is given by

�� =
2��
�

=
2��

8
=

��
4

Where ‘n’ is integer
To get satisfactorily results, we need to avoid this mode jumping. To avoid the mode
jumping one method is, changing the cavity structure of the anode which is shown in
figure below.

Anode cavityCathode

Anode

Fig(2): Rising sun magnetron

The structure shown in above figure is known as rising sun magnetron. From it can be
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observed that, the adjacent cavities having different shape such that there will be large
difference in the resonant frequency of each cavity from the adjacent cavity. One
more method to avoid the mode jumping is strapping which is shown in figure below.
In the strapping method two rings will be wounded around the anode structure such
that the rings should the cavities. One ring is connected to cavity numbers 1, 3, 5 & 7
such that these four cavities operated together and more difference in the frequency
between the cavities. Similarly second ring is connected to the cavity numbers 2, 4, 6
& 8.

8

1

2
3

4

5

6

7

Fig(4): Strapping scheme for PI-mode

SOLVED PROBLEMS
1. A two cavity klystron amplifier has the following parameters:

�� = ���� �, �� = �� ��, �� = �� ��, � = � ���
Gap spacing in either cavity (d) = 1 mm
Spacing between the two cavities (L) = 4 cm
Effective shunt impedance excluding beam loading (Rsh) = 30 KΩ

(a) Find the input gap voltage to give maximum voltage V2

(b) Find the voltage gain, neglecting the beam loading in the output cavity
(c) Find the efficiency of the amplifier, neglecting beam loading
(d) Calculate the beam loading conductance and show that neglecting it was

justified in the preceding calculations.
Answer: Given data:

�0 = 1000 �, �0 = 40 ��, �0 = 25 ��, � = 3 ���
Gap spacing in either cavity (d) = 1 mm
Spacing between the two cavities (L) = 4 cm
Effective shunt impedance excluding beam loading (Rsh) = 30 KΩ

(a) For maximum V2, J1(X) must be maximum. That is J1(X) = 0.582 at X =
1.841(from Bessel function table)

�0 = 0.593 × 106 �0 = 0.593 × 106 1000 = 1.88 × 107 �/�

�� =
��
�0

=
2���

�0
=

2 × � × 3 × 109 × 1 × 10−3

1.88 × 107 = 1 ���

�� = �� =
��� ��/2

��/2
=

��� 1�57.3/2
1/2

= 0.952
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�� = ��� =
��
��

=
2���

��
=

2� × 3 × 109 × 0.04
1.88 × 107 = 40 ���

X =
βiV1θo

2Vo

�1 =
2���
����

=
2 × 1000 × 1.841

0.952 × 40
= 96.7 �

(b)

�� =
�2

�1
�2 = 2���1 � = 2 × 25 × 10−3 × 0.582 = 29.1 ��

�2 = ���2��ℎ = 0.952 × 29.1 × 10−3 × 30 × 103 = 831 �

�� =
�2

�1
=

831
96.7

= 8.61

�� = 20 ���(8.61) = 18.7 ��
(c)

% Efficiency =
βoI2V2

2IoVo
=

0.952 × 29.1 × 10−3 × 831
2 × 25 × 10−3 × 1000

× 100 = 46.2%

(d)
The beam loading conductance is given by

�� =
��

2
��

2 − �����(
��

2
) =

��/��

2
��

2 − �����(
��

2
)

Gb =
25 × 10−3/1000

2
0.9522 − 0.952��� 1/2 = 8.8 × 10−7 �ℎ��

Beam loading resistance is given by

�� =
1
��

=
1

8.8 × 10−7 = 1.14 × 106 �ℎ��
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UNIT-5 (MICROWAVE SEMICONDUCTOR DEVICES, ANTENNAS AND
MICROWAVE MEASUREMENTS)

Syllabus: Microwave Semiconductor Devices: Gunn Oscillator – Principle of operation,
Characteristics, Two valley model, IMPATT, TRAPATT diodes.
Antennas and Microwave Measurements: Sources of errors, Patterns to be Measured,
Pattern Measurement Arrangement, Directivity Measurement, Gain Measurements (by
comparison, Absolute and 3-Antenna Methods). Description of Microwave bench-different
blocks and their features, errors and precautions, Microwave power measurements,
Measurement of attenuation, frequency, VSWR (low, medium, high), Measurement of ‘Q’ of
a cavity, Impedance measurements.

MICROWAVE SEMICONDUCTOR DEVICES:
Classification:
Solid state microwave devices are classified as

(a) Based on their electrical behavior
(i) Non-linear resistance type: example varistors (variable resistors)
(ii) Non-linear reactance type: example varactors (variable reactors)
(iii)Negative resistance type: example Tunnel diode, Impatt diode, Gunn diode
(iv)Controllable impedance type: example PIN diode
(b) Based on construction
(i) Point contact diodes
(ii) Schottky barrier diodes
(iii)Metal oxide semiconductor devices
(iv)Metal insulation devices.

Applications:
The applications of microwave solid state devices are given by

(a) The applications of varactor diode:
(i) Harmonic generation
(ii) Microwave frequency multiplication
(iii)Low noise amplification
(iv)Pulse generation and pulse shaping
(v) Tuning stage of a radio receiver
(vi)Active filters
(vii) Switching circuits and modulation of a microwave signal.
(b) Applications of PIN diode:
(i) Used as a switch
(ii) Used as a phase shifter
(iii)Used as a limiter
(c) Applications of schottky barrier diode:
(i) Low noise mixer
(ii) Balanced mixer in CW radar
(iii)Microwave detectors
(d) Applications of Gunn diode:
(i) Radar transmitters
(ii) Pulsed Gunn diode oscillators used in transponders for air traffic control(ATC)

and in
industry telemetry systems.

(iii)Broadband linear amplifier
(iv)Fast combinational and sequential logic circuits.
(v) Low and medium power oscillator in microwave receivers
(vi)As a pump sources in parametric amplifiers.
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GUNN OSCILLATOR
Principle of operation:
Gunn effect diodes are named after J.B.Gunn who in 1963 discovered a periodic
fluctuations of current passing through the n-type gallium arsenide (Ga As) specimen
when the applied voltage exceeded a certain critical value. The Gunn effect is
explained as follows: According to Gunn’s observations, when the voltage is applied
to a n-type gallium arsenide, the current in every specimen became a fluctuating
function of time. This fluctuations occurs when the applied electric (applied voltage)
field is exceeding certain threshold value, such as in the range of 2000-4000 volts/cm.
In the Ga As this fluctuation took the form of a periodic oscillation. The frequency of
this oscillation was determined mainly by the specimen and not by the external circuit.
The period of oscillation was usually inversely proportional to the specimen length
and closely equal to the transit time of electrons between the electrodes. The Ga As
specimen is shown in figure below.

High field domain

Anode

Cathode

Metal coated
contact

Fig: Schematic diagram for n-type GaAs diode.

The transit time of electrons between the cathode and anode is calculated by knowing
the velocity of the electrons which is approximately equal to 107 cm/se for gallium
arsenide. When the applied voltage or electric field is slowly increases, the carrier
drift velocity is linearly increases as shown in figure below.
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Fig: Drift velocity of electrons in n-type GaAs versus electric field
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When the applied electric field is greater than the threshold value (ETh), the drift
velocity of the electrons or charge carriers decreases as shown in figure. Then the
device exhibits the negative resistance. Gunn also discovered that the threshold
electric field varied with the length and type of material. The formula for threshold
electric field is given as

��ℎ =
�
�

Where ‘V’ is the applied voltage and ‘L’ is the length of the specimen. After threshold
value of electric field the velocity decreases means the current also decreases.
Characteristics and Two valley model:
Differential negative resistance: RWH theory is known as Ridley-Watkins-Hilsum
Theory. The fundamental concept of the RWH theory is the differential negative
resistance in bulk solid state materials when either a voltage (electric field) or a
current is applied to the terminals of the sample. There are two modes of negative-
resistance devices such as voltage-controlled and current-controlled modes as shown
in figure below.

E

J

E

J

(a) Voltage-controlled mode
(a) Current-controlled mode

Fig: Diagram of negative resistance

E1 E2

J1

J2

J1

J2

E1 E2

In the voltage-controlled mode the current density can be multivalued, where as in the
current-controlled mode the voltage can be multivalued. In a specimen a high field
domain will be formed if it is under voltage-controlled mode and high current
filament will be formed if it is under current-controlled mode. The negative resistance
is given by

�������� ���������� =
�2 − �1

�2 − �1
Two-valley model theory: According to energy band theory of the n-type gallium
arsenide (GaAs), the conduction band of the GaAs contains two sub bands which are
called lower valley and upper valley as shown in figure below.
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Eg = 1.43 eV

ΔE = 0.36 eV

Valence
   band

Conduction
     band

Forbidden 
   band

Lower valley

Upper valley

mel = 0.068
μl = 8000 cm2/ V-sec 

meu = 1.2
μu = 180 cm2/ V-sec 

Fig(1): Two-valley model of electron energy versus wave number for n-type GaAs

The data for two valleys is given below.
Valley Effective mass(me) Mobility(μ) Separation(ΔE)
Lower Mel = 0.068 μl = 8000 cm2/ V-sec 0.36 eV

upper Mel = 1.2 μl = 180 cm2/ V-sec 0.36 eV
The lower valley having low effective mass and high mobility. When the electrons are
entering in to the lower valley of conduction band from the valence band, their
effective mass will be decreases and mobility will be increases compared to upper
valley. Under the open circuited condition, all the charge carriers present only within
the valence band as shown in figure 1 above. When the biasing is applied, the charge
carriers enter in to the lower valley of the conduction band as shown in figure 2(a),
where ‘k’ is the wave number. When the applied electric field is less than the energy
of lower valley (El) then all the electrons will be present
within the lower valley.

k

E

0

(a) E < El

k

E

0

(b) El < E < Eu

k

E

0

(c) Eu < E

Fig(2): Transfer of electron densities

Since each energy state in the conduction band has its own energy level. Lower valley
having less energy compared to upper valley, but lower valley having higher energy
compared to valence band. When the electrons acquires sufficient energy from the
applied field they can enter different energy states in the conduction band depends
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upon their energy compared to the energy of the states. When the electrons energy is
lesser than the lower valley energy, they can jump up to the lower valley, but they
cannot enter in to the upper valley. This situation is shown in figure 2(a). When the
applied electric field is in between El and Eu, then the charge carriers will try to jump
in to the upper valley. Where El is energy of lower valley and Eu is energy of upper
valley. As shown in figure 2(b), when El < E < Eu some of the electrons will enter
from lower valley to upper valley. When the applied electric field is greater than the
energy of upper valley, then all the electrons will enter from lower valley to upper
valley as shown in figure 2(c).
If the electron densities in the lower and upper valley are ‘nl’ and ‘nu’ then the
conductivity of the n-type GaAs is given by

� = � ���� + ����
Where ‘e’ is the charge of electron, ‘μ’ is the mobility of electrons. The V-I
characteristics and electric field versus drift velocity characteristics are shown in
figure 3 below.

J

EEVEth

Jth

JV

Negative resistance
            region

Fig(3a): V-I characteristics

EEVEth

Fig(3b): Drift velocity versus electric field

(kV/cm)

vD

As shown in figure 3a, when the applied electric field is slowly increasing from zero,
the electrons will start to enter in to the lower valley of the conduction band and hence
the current is linearly increases. The current density (J) also linearly increases. The
drift velocity of electrons will increase linearly with the applied electric field. When
the applied electric field is greater than the threshold value (Eth), the electrons will
enter in to the upper valley and their effective mass will be increases and hence the
mobility of electrons decreases. Once mobility decreases, the electron drift velocity
also decreases. Therefore current density also decreases as shown in figure 3a. Then
the device exhibits negative resistance. Therefore, the final conclusion is the device
exhibits negative resistance when the charge carriers enter from lower valley to upper
valley. After completion of electron transfer from lower valley to upper valley, again
the current increases linearly because, the effective mass will be constant as long as
the charge carriers present in the upper valley. When the charge carriers transfers
from lower valley to upper valley, its mass is changing from one value to another
value and hence the current decreases.
On the basis of RWH theory, the band structure of a semiconductor must satisfy the
following three criteria in order to exhibit negative resistance.

(i) The separation energy between the bottom of the lower valley and the bottom
of the upper valley must be several times larger than the thermal energy
(about 0.026 eV at room temperature). That means ΔE > kT or ΔE >
0.026 eV.
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(ii) The separation energy between the valleys must be smaller than the energy
gap between the conduction band and valance band. That is ΔE < Eg.
Otherwise the semiconductor will breakdown and become highly
conductive before electron begin to transfer to the upper valley because
hole-electron pair formation is created.

Electrons in the lower valley must have high mobility, small effective mass and low
density of states where as the electrons in the upper valley must have low mobility,
large effective mass and high density of states. In other words electron velocities must
be larger in the lower valley than in the upper valley.

IMPATT diode
It is possible to make a microwave diode exhibit negative resistance by having delay
between voltage and current in an avalanche together with transit time through the
material. Such devices are called Avalanche transit time devices. They use carrier
impact ionization to produce negative resistance at microwave frequencies. There are
three distinct modes of avalanche oscillators.

(i) IMPATT: Impact Ionization Avalanche Transit Time device.
(ii) TRAPATT: Trapped Plasma Avalanche Triggered Transit devices.
(iii)BARITT: Barrier Injected Transit Time device.

IMPATT Diode: The abbreviation of IMPATT is Impact Ionization Avalanche
Transit Time. The negative resistance can also be defined as that property of a device
which causes the current through it to be 1800 out of phase with the voltage across it.
This is the kind of negative resistance exhibited by IMPATT diode i.e., if we show the
voltage and current have a 1800 phase difference, then negative resistance in IMPATT
diode is proved. The schematic diagram of IMPATT diode is shown in figure 1 below.

P+ n n+

Anode Cathode

V

Fig(1): Schematic diagram of IMPATT diode

An extremely a high voltage is applied to the IMPATT diode eventually resulting in a
very high current. A normal diode would very quickly breakdown under these
conditions but IMPATT diode constructed such that it will withstand these conditions
repeatedly. The reverse bias applied to the diode will cause to flow the minority
carriers in the diode. Due to application of high voltage, these minority carriers will
generate some additional electrons and holes by knocking them out of the crystal
structures by so called Impact ionization. These additional carriers continue the
process at the junction and it now snowballs into an avalanche. Due to this the
avalanche current multiplication will be takes place.

TRAPATT diode
The abbreviation TRAPATT stands for Trapped Plasma Avalanche Triggered Transit
mode. The schematic structure and voltage & current waveforms of a TRAPATT
diode is shown in figure 2 below. TRAPATT diode is a high efficiency microwave
generator capable of operating from several hundred MHz to several GHz. The basic
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operation of the oscillator is semiconductor pn junction diode reverse biased to
current densities well in excess of those encountered in normal avalanche operation.
The operation of TRAPATT diode is explained as follows:

At Point ‘A’ the electric field is uniform throughout the sample and its
magnitude is large but less than the required for avalanche breakdown. At ‘A’, the
diode current is turned on.

P+ n n+

Fig(2a): Schematic diagram of TRAPATT diode
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Fig(2b): Voltage and current waveforms

Since the only charge carriers present are those caused by the thermal
generation, the diode initially charge up like a linear capacitor, driving the magnitude
of the electric field above the breakdown voltage. When the sufficient number of
carriers is generated, the particle current exceeds the external current and the electric
field is depressed throughout the depletion region, causing the voltage to decrease.
This portion of the cycle is shown by the curve from point ‘B’ to point ‘C’. During
this time interval the electric field is sufficiently large for the avalanche to continue,
and dense plasma of electrons and holes is created. As some of the electrons and holes
drift out of the ends of the depletion layer, the field is further depressed and “traps”
the remaining plasma. The voltage decreases to point ‘D’.
A long time is required to remove the plasma because the total plasma charge is large
compared to the charge per unit time in the external circuit. At point ‘E’ the plasma is
removed, but a residual charge of electrons remains in one end of the depletion layer
and a residual charge of holes in the other end. At point ‘F’ all the charge that was
generated internally has been removed. This charge must be greater than or equal to
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that supplied by the external current; otherwise the voltage will exceed that at point
‘A’. from point ‘F’ to point ‘G’ the diode charge up again like a fixed capacitor. At
point ‘G’ the diode current goes to zero for half a period and the voltage remains
constant at VA until the current comes back on and the cycle repeats.

SOURCES OF ERRORS
Any measured quantity has a margin of error. For example, the complete value for the
gain of an antenna might be 15 dbi±0.5dB indicating a half decibel uncertainty.
Various errors and their sources are described here under
(a) Phase error and amplitude taper due to finite measurement distance:
Due to the finite measurement distance between the two antennas, phase error and
amplitude
error will occur. Consider a radiation pattern of source antenna shown the figure
below.

Source antenna Radiation pattern

Receiving
 antenna

Phase error

Fig: Phase error and amplitude taper

Due to the particular shape of the radiation pattern, it will modulate the amplitude of
the signal reached the receiving antenna. Also all the incident waves will not have the
same phase.
(b) Reflections:
Due to presence of obstacles (examples like trees, buildings, towers, etc) between the
two antennas, some waves will undergo reflections, scattering, diffraction, shadowing,
etc. The reflections are especially harmful in the measurement of low side lobes. A
small reflection coupled to the AUT through the main lobe may completely mask the
direct wave coupled through the side lobes.
(c) Other sources of error:

(i) Coupling to the reactive near field may be significant at low frequencies.
(ii) There is a scope for the alignment errors due to careless alignment of the

source antenna.
(iii)Man-made interfering signals may couple to the sensitive receiver especially

in outdoor ranges.
(iv)Due to large measurement distance between the two antennas, atmospheric

effects such as scintillation and multipath propagation will be present.
(v) Incorrect use of cable such as cables with insufficient shielding, and

unbalanced transmission lines may cause errors.
(vi)Impedance mismatch between the instruments and antennas may cause errors

in the gain measurements.
(vii) Imperfections of the transmitter, receiver and positioner cause

measurement errors.
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PATTERNS TO BE MEASURED
In case of antenna measurements, two patterns to be measured are E-plane pattern and
H-plane pattern. These two patters are shown in the figure below.

H-plane
Pattern
EØ (θ,Ø=0)

x

y

z

Fig: Patterns for horizontal
        antenna

x

y

z

Fig: Patterns for vertical
        antenna

E-plane
Pattern
EØ (θ=90,Ø)

E-plane
Pattern
E θ (θ,Ø=0)

H-plane
Pattern
E θ (θ=90,Ø)

For Horizontal antennas,
(i) The φ-component of electric field (horizontal) is measured as a function of φ

in the xy-plane (θ=900). It is represented as Eφ(θ=900, φ) and is called as
E-plane pattern.

(ii) The φ-component of electric field is measured as a function of θ in the xz-
plane (φ=00). It is represented as Eφ(θ, φ=00) and is called as the H-plane
pattern.

For Vertical antennas,
(i) The θ-component of electric field is measured as a function of φ in the xy-

plane (θ=900). It is represented as Eθ(θ=900, φ) and is called as H-plane
pattern.

(ii) The θ-component of electric field is measured as a function of φ in the xz-
plane(φ=00). It is represented as Eθ(θ, φ=00) and is called as the E-plane
pattern.

PATTERNMEASUREMENT ARRANGEMENT
The arrangement for measurement of radiation pattern is shown in the figure below. It
contains transmitting antenna primary antenna, Antenna Under Test (AUT) called
secondary antenna, mount for rotating the primary antenna, detector or receiver and
indicator. The primary antenna will radiate the signal towards the secondary antenna.
The secondary antenna will be rotated with the help of antenna drive unit. The
indicator will be used to indicate or to measure the relative magnitude of the received
field. There are two requirements for conducting the experiments with
the above arrangement such as distance requirement and uniform illumination
requirement.
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Transmitter
         Or
Oscillator

Antenna drive 
           unit

Receiver

Indicator

Primary antenna
(Tx.Antenna)

Secondary antenna
(Rx.Antenna)

Fig: Pattern measurement arrangement

The distance between the two antennas must be related to the following equation

� ≥
2�2

�
Or

� =
�2

8�
Where d is the maximum linear dimension of the either antenna, λ is the wavelength
and δ is phase difference error.
The other requirement for an accurate field pattern measurement is, the primary
antennas should produce a plane of wave of uniform amplitude and phase over the
distance r.

DIRECTIVITY MEASUREMENT
The directivity of antenna is defined as

�����������(�) =
������� ��������� ���������
������� ��������� ���������

� =
4� × ������� ��������� ���������

�=0
2�

�=0
� ��������� ��������� × sin �����

Form the above equation the directivity can be determined knowing the radiation
intensity with the help of radiation pattern. In the above equation the integral part in
the denominator can be determined using any one of the following two methods:
Orange slice method:
In this method, set of patterns is obtained by measuring the radiation intensity versus
θ for a discrete value of φ. Then each pattern is multiplied continuously by sinθ
weight factor and then summed together.
Conical cut method:
In this method, set of patterns is obtained by measuring the radiation intensity versus
φ for a discrete value of θ. Then each pattern is multiplied continuously by sinθ
weight factor and then summed together.
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GAIN MEASUREMENT
Gain measurement by using comparison method:
The set up require for the measurement of gain of the antenna by using the
comparison method is
shown in the figure below

Fixed 
attenuator

Receiver
Detector

Indicator

Signal
source

Modul
ator

Power
Bridge

Detector

Precision
Calibrated
Variable
attenuator

Primary antenna
           (AUT)

Standard gain
Horn antenna

Secondary antenna
(Tx.Antenna)

Fig: set up for the gain measurement

The transmitting section contains, signal source, modulator, precision calibrated
variable attenuator, detector, Power Bridge and arbitrary transmitting antenna. The
modulator modulates the signal generated by the signal source. This modulated signal
is transmitted towards the receiving antenna. The precision calibrated variable
attenuator is used to adjust the power to the required level. The power bridge is used
to sense the variations in the frequency of operation if any during the experiment. The
receiver section contains two antennas such as antenna under test (AUT) and standard
gain horn antenna (reference antenna), fixed attenuator, receiver detector and
indicator. The purpose of fixed attenuator is, to avoid the impedance mismatch
between the two antennas and the receiver. The experimental procedure is explained
as follows:

(i) Connect the standard horn antenna to the receiver with the help of switch‘s’
and orient the antenna towards the transmitting antenna.

(ii) Adjust the input to the transmitting antenna to a convenient level with the help
of precision calibrated variable attenuator.

(iii)Note down the attenuator dial setting and let it be W1.
(iv)Note down the reading of Power Bridge and let it be P1.
(v) Now replace the standard horn antenna with AUT (antenna under test).
(vi)Again adjust the precision calibrated variable attenuator such that, the receiver

indicates the same previous reading as was with horn antenna.
(vii) Again note down the readings of variable attenuator and power Bridge and

let it be W2 and P2 respectively.
(viii) When P1 = P2, then calculate the gain by using the formula

����(�) =
�2

�1
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Or gain in dB is � �� = �2 �� − �1(��)
(ix)When P1 ≠ P2, then calculate the gain by using the formula

� =
�2

�1
×

�1

�2
= �� × �

Or gain in dB is � �� = �� �� + �(��)
Gain Measurement by using Absolute method:
The experimental set up for the measurement of gain by using the absolute method is
shown the figure below.

Fixed 
attenuator

Receiver
Detector

Indicator

Signal
source

Modul
ator

Power
Bridge

Detector

Precision
Calibrated
Variable
attenuator

Receiving antenna
Transmitting antenna

Fig: set up for the gain measurement

The transmitting section contains, signal source, modulator, precision calibrated
variable attenuator, detector, Power Bridge and transmitting antenna. The modulator
modulates the signal generated by the signal source. This modulated signal is
transmitted towards the receiving antenna. The precision calibrated variable attenuator
is used to adjust the power to the required level. The power bridge is used to sense the
variations in the frequency of operation if any during the experiment. The receiver
section contains receiving antenna, attenuator pad or fixed attenuator, receiver
detector and indicator. In this method, the two antennas (transmitting and receiving)
must be identical. The experimental procedure is explained as follows:

(i) Transmit the power with transmitting antenna towards the receiving antenna
with the help of signal source and let this transmitted power is PT.

(ii) Note down the power received with the receiving antenna with the help of
receiver and indicator and let it be PR.

(iii)Calculate the value of gain by using the Friiss transmission equation given by

�� = ������
�

4��

2

Where PR = Power received
PT = Power transmitted
GT = Gain of the transmitting antenna
GR = Gain of the receiving antenna
R = Distance between the two antennas
λ = Wavelength

Since the two antennas (transmitting and receiving) are identical, GT = GR = G
Therefore the gain (G) is given by
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� =
4��

�
��

��

Gain Measurement by using 3-Antenna Method:
When two identical antennas are not available, then three antenna method will be used
to
measure the gain of the antenna. In three antenna method, the gain will be measured
by using three different antennas. The experimental set up for the measurement of
gain by using three antenna method is shown in the figure below. In this method,
three equations will be obtained with the help of three antennas. Let the three
antennas are A1, A2 and A3. Three equations will be obtained as follows:
Case-I (Antenna A1 is transmitting and antenna A2 is receiving):
By using the friiss transmission equation the, the relation between the received power
and transmitted power is given by

��2 = ��1��1��2
�

4��

2

−− 1

Fixed 
attenuator

Receiver
Detector

Indicator

Signal
source

Modul
ator

Power
Bridge

Detector

Precision
Calibrated
Variable
attenuator

Receiving antenna
Transmitting antenna

Fig: set up for the gain measurement

Where PT1 is the power transmitted by antenna A1, PR2 is the power received by the
antenna A2, GT1 is the gain of the antenna A1, GR2 is the gain of the receiving antenna
A2 and R is the distance between the transmitting and receiving antenna.
Case-II (Antenna A2 is transmitting and antenna A3 is receiving):
By using the friiss transmission equation the, the relation between the received power
and transmitted power is given by

��3 = ��2��2��3
�

4��

2

−− 2
Where PT2 is the power transmitted by antenna A2, PR3 is the power received by the
antenna A3, GT2 is the gain of the antenna A2, GR3 is the gain of the receiving antenna
A3 and R is the distance between the transmitting and receiving antenna.
Case-III (Antenna A3 is transmitting and antenna A1 is receiving):
By using the friiss transmission equation the, the relation between the received power
and transmitted power is given by

��1 = ��3��3��1
�

4��

2

−− 3
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Where PT3 is the power transmitted by antenna A3, PR1 is the power received by the
antenna A1, GT3 is the gain of the antenna A3, GR1 is the gain of the receiving antenna
A1 and R is the distance between the transmitting and receiving antenna.
But

��1 = ��1 = �1
��2 = ��2 = �2
��3 = ��3 = �3

Then the above three equations (1, 2, 3) becomes

��2 = ��1�1�2
�

4��

2

−− 4

��3 = ��2�2�3
�

4��

2

−− 5

��1 = ��3�3�1
�

4��

2

−− 6
Equations 4, 5 and 6 consist of three unknowns such as G1, G2, and G3. By solving
these three equations we can obtained the gain of any antenna (either the gain of A1 or
A2 or A3).
Description of Microwave bench-different blocks and their features
The basic microwave bench setup for measuring the various microwave parameters is
shown in the following figure.

Microwav
e source Isolator Variable 

attenuator
Frequency 

meter
Slotted 
section

Matched 
terminati

on

Indicator

Fig: Microwave bench setup

The function of each and every block in the bench setup is explained as follows:
Microwave source is a oscillator which will generate the microwave signal of required
frequency. Examples of microwave oscillators are Reflex klystron oscillator,
Magnetron oscillator, Gunn oscillator, etc. The function of isolator is to avoid the
reflections not to reaching the source due to mismatch of the load. Variable attenuator
will be used to set the required value of the signal strength for a particular experiment.
Frequency meter will be used to measure the frequency of the signal flowing through
the bench setup. Slotted section will be used to measure the very important parameters
such as Vmax , Vmin , VSWR, reflection coefficient, guide wavelength, distance of Vmax,
and Vmin, etc. Matched termination is matched load connected to the second port of
the slotted section. Indicator is a either CRO or VSWR meter or some other device
which will be used to read the values to measured.
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Errors and precautions

While conducting the microwave measurements, we must follow certain precautions
otherwise measurements errors will occur. The major precautions to be followed
while measuring the microwave parameters are:
1) When the microwave source is a reflex klystron oscillator, then the reflex klystron
power supply must be properly checked such that the beam voltage should be in
minimum position and repeller voltage must be in maximum position. After switch on
the power supply we need to wait until getting the stable value of beam current by
setting the particular value of beam voltage. Cooling fan must be used. The bench
setup must be horizontal otherwise alignment errors will occur.
2) When the microwave source is a Gunn diode, then it must be operated in the
negative resistance region. While measuring the values in the negative resistance
region, the values must be note down as early as possible.
Microwave power measurement-Bolometers
The Bolometer is temperature sensitive device. There are two types of bolometers
such as barretters and thermistors. Barretters are positive temperature coefficient
device and thermistor is a negative temperature coefficient device. Positive
temperature coefficient means the resistance of a device will increase with increase in
temperature where as negative temperature coefficient means the resistance of a
device will decrease with temperature. The following figure represents the
measurement of microwave power.

R1           R2

Waveguide

Microwave power

Bolometer

Fig: Basic principle of microwave power measurement using bolometer

Microwave
 power

R1 R2

R3

R4

G

mA

R5

R6

R7

Edc

Fig: Measurement of microwave power
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The microwave power to be measured must be applied to the bolometer. Then the
power will be absorbed by the bolometer resistance and it dissipates this power in the
form of heat. Due to this heat, the surrounding temperature will be changed. Therefore,
the resistance of bolometer changes. The difference between the resistances of
bolometer before application of power (R1) and after application of power (R2) will be
proportional to the power to be measured. The second figure shows the bridge method
of power measurement in which the bolometer itself act as the one of the arm. The
procedure for measuring the power by using the second figure is as follows:

(i) Adjust the resistance R5 to get the balance condition in the bridge and
note down the d.c. voltage and let it be E1

(ii) Apply the microwave power to be measured to the bolometer and
again adjust the resistance R5 to get the balance condition in the bridge
and note down the d.c.voltage. let it be E2

(iii) The difference between the two d.c. voltages will gives the microwave
power to be measured.

Measurement of attenuation
Attenuation measurement using Power ratio method:
The bench setup for the measurement of attenuation using the power ratio method is
shown in the following figure. The procedure for attenuation measurement using the
power ratio method will be explained as follows:

Microwav
e source Isolator Frequency 

meter
Slotted 
section

terminati
on

Crystal 
detector

Fig: Microwave bench setup for attenuation measurement

Device 
Under Test

Thermistor 
mount

Power 
meter

(i) Measure the power with the help of bench setup without connecting
the DUT (Device Under Test) and let it be Pin.

(ii) Without disturbing the bench setup, Connect the DUT and measure the
power with the help of power meter and let it be Pout.

(iii) Calculate the attenuation by using the formula
Attenuation = 10 log(Pin/Pout)

Attenuation measurement using RF substitution method:
The bench setup for the measurement of attenuation using the RF substitution method
is shown in the following figure.

Microwav
e source Isolator Frequency 

meter
Slotted 
section

terminati
on

Crystal 
detector

Fig: Microwave bench setup for attenuation measurement

Device 
Under Test

Power 
meter
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The procedure for attenuation measurement using the power ratio method will
be explained as follows:
(i) Measure the power by connecting the DUT and let it be P watts
(ii) Replace the DUT with precession calibrated variable attenuator.
(iii) Adjust the precession calibrated variable attenuator to read the same

power as it was obtained with DUT.
(iv) The value on the variable attenuator gives the attenuation of the DUT.

Frequency measurement
The bench setup for the frequency measurement using the frequency meter or wave
meter is shown in the following figure. The procedure for the measurement of
frequency by using the frequency meter is as follows:

(i) Set up the signal in the bench setup by properly adjusting the power
supply and variable attenuator.

(ii) Rotate the frequency meter until getting the dip (suddenly the signal in
the indicator will reduces to zero) in the signal of indicating meter.

(iii) Directly note down the values of frequency from the frequency meter.

Microwav
e source Isolator Frequency 

meter
Slotted 
section

terminati
on

Indicator

Fig: Microwave bench setup for frequency measurement
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Standing wave measurements –measurement of low and high VSWR
To measure the low VSWR values, the bench setup is shown in the following figure.
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section
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Fig: Microwave bench setup for measurement of low VSWR
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The procedure for measurement of low VSWR is as follows:
(i) Set up the signal in the bench setup by properly adjusting the power

supply and variable attenuator.
(ii) Measure the maximum voltage(Vmax) and minimum voltage (Vmin)

by moving the probe carriage of slotted section.
(iii) Calculate the VSWR by using the formula

VSWR = Vmax/Vmin
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Measurement of high VSWR:
To measure the high VSWR values, the bench setup is shown in the following
figure. The method used to measure the high VSWR is called as the double
minima method.
The procedure for measuring the high VSWR is as follows:
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Fig: Microwave bench setup for measurement of low VSWR
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(i) Set up the signal in the bench setup by properly adjusting the power
supply and variable attenuator.

(ii) Locate the minima by adjusting the probe carriage of slotted section.
(iii) Find out the distance at which the power is twice the minimum value

on both sides of the minima point as shown in the following figure.

(iv) Calculate the guide wavelength(λg)
(v) Calculate the VSWR by using the following formula

VSWR = λg/π(d2-d1)
Measurement of Cavity-Q
The Bench setup for the measurement of Q-factor or Quality factor of a cavity
resonator is shown in the following figure. The method used for the measurement of
Q-factor is called transmission method.

Microwav
e source Isolator Cavity 

resonator Detector

Fig: Microwave bench setup for measurement of Q-factor

Variable 
attenuato

r

Power 
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The procedure for the measurement of Q-factor is as follows:
(i) Set up the signal in the bench setup by properly adjusting the power

supply and variable attenuator.

Vmin

d1 d2 Distance

Power

Vx =√2Vmin

Double minimum
power points
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(ii) Vary the frequency of the microwave signal and note down the power
output for various values of frequency.

(iii)Draw the graph between the power output versus frequency
(iv)From the graph calculate the 3 dB bandwidth.
(v) Calculate the Q-factor by using the following formula

Q = 1/Bandwidth
Impedance measurements
Impedance measurement by using the slotted line method:
The bench setup for the impedance measurement by using the slotted line method is
shown in the following figure.
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Fig: Microwave bench setup for measurement of impedance using slotted line
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The procedure for the measurement of impedance is as follows:
(i) Set up the signal in the bench setup by properly adjusting the power supply

and variable attenuator.
(ii) Connect the unknown load whose impedance is to be measured and locate the

minima with the help of slotted line
(iii)Replace the load with movable short and again locate the minima
(iv)Observe the shift in the minima. If the minima is shifted to left side, then the

load is inductive and if the shift in minima is right side then the load is
capacitive.

(v) Findout the VSWR of the load using the VSWR measurement procedure.
(vi)Calculate the impedance by using the smith chart.

Impedance measurement by using the Reflectometer method
The bench setup for the impedance measurement by using the reflectometer method is
shown in the following figure.

Microwave 
source Isolator Variable 

attenuator
Forward directional 

coupler (20 dB)
Reverse directional 

coupler (20 dB)
Unknown 

Load

Forward 
detector

Forward 
detector

Reflectometer  

Pi /100
Pr /100Pi Pr

Fig: Measurement of impedance using reflectometer.
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The procedure for the measurement of impedance is as follows:
(i) Make the arrangements as per the diagram shown in the bench setup.
(ii) Set up the signal in the bench setup by properly adjusting the power supply

and variable attenuator.
(iii)The forward directional coupler will divert some the incident signal towards

the reflectometer and reverse directional coupler will divert the some of
the reflected signal towards the reflectometer. The reflectometer is meter
which will directly gives the reflection coefficient values from the incident
and reflected powers.

(iv)Note down the value of reflection coefficient(ρ).
(v) Calculate the value of the impedance(ZL) of the unknown load by using the

following formula
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